Skip to main content
Lecture 3 | Cycles and Efficiency
PH202 Summer Syllabus
PH203 | Corvallis | Homepage - Summer 2024
PH202 Summer Calendar
PH202 Summer Daily Learning Guide
PH202 Summer Archive
PH202 Summer Supplementary
PH202 Summer Lab/Rec. TA Info
Calendar
Library
Maps
Online Services
Make a Gift
You are here
Home
Tangential direction
Tangential Direction
The tangential direction
always
points around the perimeter of the circle.
Physics Dictionary
Read more
about Physics Dictionary
UCM: Key Terms
Read more
about UCM: Key Terms
Key Terms
Read more
about Key Terms
BoxSand
Review and Vectors
General Review
Lecture 1 | Review
Vector Operations
Lecture 1 | Vectors
Kinematics
Average Quantities
Lecture 1 | Position and Displacement
Lecture 2 | Average Velocity and Acceleration
Graphical Analysis
Lecture 1 | Graphical Analysis
1D Kinematics
Lecture 1 | 1-D Kinematics of Constant Acceleration
Lecture 2 | 1-D Kinematics Problem Solving Strategies
2D Kinematics
Lecture 1 | 2-D Kinematics
Lecture 2 | Projectile Motion
Mechanics
Forces 1
Lecture 1 | Forces Introduction
Lecture 2 | FBD and Newton's 2nd Law
Lecture 3 | Application of Newton's 2nd Law
Forces 2
Lecture 1 | Friction
Lecture 2 | Inclined Planes
Forces 3
Lecture 1 | Coupled Systems and Pulleys
Lecture 2 | Forces and Uniform Circular Motion
Momentum
Impulse and Momentum
Lecture 1 | Impulse and Momentum Theorem
Conservation of Momentum
Lecture 1 | 1-D Conservation of Momentum
Lecture 2 | 2-D Conservation of Momentum
Energy
Work & Kinetic Energy
Lecture 1 | Work and Kinetic Energy Theorem
Conservation of Energy
Lecture 1 | Potential Energy and Conservation of Energy
Lecture 2 | Conservation of Energy Application
Lecture 3 | Systems and Energy, Collisions
Rotational Mechanics
Rotational Kinematics
Lecture 1 | Angular Position, Velocity, and Acceleration for Non-uniform Circular Motion
Lecture 2 | Connecting Rotational and Translational Kinematics
Statics & Dynamics
Lecture 1 | Torque and the 2nd Law for Rotation
Lecture 2 | Application of 2nd Law: Static Equilibrium and Stability
Lecture 3 | Dynamics and Moment of Inertia
Rotation and Conserved Quantities
Lecture 1 | Angular Momentum and Rotational Energy
Thermodynamics
Microscopic Model of Gases
Lecture 1 | Micro view of matter, kinetic theory of gases
Lecture 2 | State variables and equations of state, ideal gas
1st Law and Heat
Lecture 1 | 1st law of thermodynamics, energy transfers
Lecture 2 | Specific Heat, Phase Transformations, Calorimetry
Lecture 3 | Conduction, Convection, Radiation
2nd Law and Entropy
Lecture 1 | Entropy, 2nd Law
Thermodynamic Processes and Cycles
Lecture 1 | Heat Engines
Lecture 2 | PV Diagrams, Processes
Lecture 3 | Cycles and efficiency
Fluid Mechanics
Fluid Statics
Lecture 1 | Pressure at a Depth, Pascal's Principle
Lecture 2 | Hydraulics, Buoyancy
Fluid Dynamics
Lecture 1 | Continuity, Bernoulli
Waves & Oscillations
Oscillating Systems
Lecture 1 | General Oscillations, Simple Harmonic Motion, Equations of Motion
Lecture 2 | SHM Case Studies: Pendulums and Springs
Lecture 3 | Damped Oscillations, Driven Oscillations and Resonance
Traveling Waves
Lecture 1 | Wavelength, Frequency, Speed, Equations of Motion
Lecture 2 | Sound, Light, Waves on a String
Lecture 3 | Energy and Intensity, Sound Intensity Level: Decibels
Lecture 4 | Doppler
Superposition of Waves
Lecture 1 | Standing Wave Resonance in Tubes and on Strings
Lecture 2 | General Two Source Interference
Optics
Wave Optics
Lecture 1 | Young's Double Slit
Lecture 2 | Multi and Single Slit, Spectroscopy
Lecture 3 | Index of Refraction, Thin Film Interference
Ray Optics
Lecture 1 | Rays, Reflection, Refraction, TIR, Dispersion
Lecture 2 | Formation of Images, Ray Tracing
Lecture 3 | Thin Lenses
Electric Fields & Potentials
Charges and the Electric Force
Lecture 1 | Micro-model of Charge, Q-transfer, Conductors vs. Insulators
Lecture 2 | Electric Forces and Coulomb's Law
Electric Fields
Lecture 1 | Field Model, Charges in an Electric Field
Lecture 2 | Electric Field from Point Charges
Lecture 3 | Electric Fields Patterns
Electric Potential
Lecture 1 | Electric Potential and Electric Potential Energy
Lecture 2 | EP Field Patterns and Motion of Charges
Lecture 3 | Connecting Electric Potential and Electric Field
Circuits
Resistive Circuits
Lecture 1 | Micro-model of Charge flow, Resistance, Ohm's Law, Power
Lecture 2 | Kirchoff's Laws
Lecture 3 | Equivalent Circuits
Magnetism
Magnetic Fields and Forces
Lecture 1 | Magnetic Fields, Magnetism
Lecture 2 | Magnetic Force, UCM
Magnetic Induction
Lecture 1 | Motional EMF, Induced Currents
Lecture 2 | Faraday and Lenz's Law
Sensemaking
Math Tools
Scientific Notation
Significant Figures
Dimensional Analysis
Units
Algebra
Mathematization
Basic Functions
Proportional Reasoning
Geometry and Trigonometry
Vectors
Order of Magnitude Estimations
Physics Dictionary
Resource Repositories
Activities Repository
Clicker Questions Repository
Content Repository
Demos Repository
Example Problems Repository
Labs Repository
Recitations Repository
Simulations Repository