
Chapter 4

Forces I

4.1 The Important Stuff

4.1.1 Newton’s First Law

With Newton’s Laws we begin the study of how motion occurs in the real world. The study
of the causes of motion is called dynamics, or mechanics. The relation between force
and acceleration was given by Isaac Newton in his three laws of motion, which form the
basis of elementary physics. Though Newton’s formulation of physics had to be replaced
later on to deal with motion at speeds comparable to the speed light and for motion on the
scale of atoms, it is applicable to everyday situations and is still the best introduction to
the fundamental laws of nature. The study of Newton’s laws and their implications is often
called Newtonian or classical mechanics.

Particles accelerate because they are being acted on by forces. In the absence of forces,
a particle will not accelerate, that is, it will move at constant velocity.

The user–friendly way of stating Newton’s First Law is:

Consider a body on which no force is acting. Then if it is at rest it
will remain at rest, and if it is moving with constant velocity it will
continue to move at that velocity.

Forces serve to change the velocity of an object, not to maintain its motion (contrary to
the ideas of philosophers in ancient times).

4.1.2 Newton’s Second Law

Experiments show that objects have a property called mass which measures how their motion
is influenced by forces. Mass is measured in kilograms in the SI system.

Newton’s Second Law is a relation between the net force (F) acting on a mass m and
its acceleration a. It says:

∑

F = ma
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In words, Newton’s Second Law tells us to add up the forces acting on a mass m; this
sum,

∑

F (or, Fnet) is equal to the mass m times its acceleration a.

This is a vector relation; if we are working in two dimensions, this equation implies both

of the following:
∑

Fx = max and
∑

Fy = may (4.1)

The units of force must be kg ·
m
s2

, which is abbreviated 1 newton (N), to honor Isaac
Newton (1642–1727), famous physicist and smart person. Thus:

1 newton = 1N = 1 kg·m
s2

(4.2)

Two other units of force which we encounter sometimes are:

1 dyne = 1 g·cm
s2

= 10−5 N and 1pound = 1 lb = 4.45N

4.1.3 Examples of Forces

To begin our study of dynamics we consider problems involving simple objects in simple
situations. Our first problems will involve little more than small masses, hard, smooth
surfaces and ideal strings, or objects that can be treated as such.

For all masses near the earth’s surface, the earth exerts a downward gravitational force
which is known as the weight of the mass and has a magnitude given by

W = mg

A taught string (a string “under tension”) exerts forces on the objects which are attached
to either end. The forces are directed inward along the length of the string.) In our first
problems we will make the approximation that the string has no mass, and when it passes
over any pulley, the pulley’s mass can also be ignored. In that case, the magnitude of the
string’s force on either end is the same and will usually be called T , the string’s tension.

A solid surface will exert forces on a mass which is in contact with it. In general the force
from the surface will have a perpendicular (normal) component which we call the normal
force of the surface. The surface can also exert a force which is parallel; this is a friction
force and will be covered in the next chapter.

4.1.4 Newton’s Third Law

Consider two objects A and B. The force which object A exerts on
object B is equal and opposite to the force which object B exerts on
object A: FAB = −FBA

This law is popularly stated as the “law of action and reaction”, but in fact it deals with
the forces between two objects.
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4.1.5 Applying Newton’s Laws

In this chapter we will look at some applications of Newton’s law to simple systems involving
small blocks, surfaces and strings. (In the next chapter we’ll deal with more complicated
examples.)

A useful practice for problems involving more than one force is to draw a diagram showing
the individual masses in the problem along with the vectors showing the directions and
magnitudes of the individual forces. It is so important to do this that these diagrams are
given a special name, free–body diagrams.

4.2 Worked Examples

4.2.1 Newton’s Second Law

1. A 3.0 kg mass undergoes an acceleration given by a = (2.0i + 5.0j) m
s2
. Find the

resultant force F and its magnitude. [Ser4 5-7]

Newton’s Second Law tells us that the resultant (net) force on a mass m is
∑

F = ma.
So here we find:

Fnet = ma

= (3.0 kg)(2.0i + 5.0j) m
s2

= (6.0i + 15.j)N

The magnitude of the resultant force is

Fnet =
√

(6.0N)2 + (15. N)2 = 16. N

2. While two forces act on it, a particle of mass m = 3.2 kg is to move continuously
with velocity (3 m

s
)i− (4 m

s
)j. One of the forces is F1 = (2N)i+(−6N)j. What is the

other force? [HRW5 5-5]

Newton’s Second Law tells us that if a is the acceleration of the particle, then (as there
are only two forces acting on it) we have:

F1 + F2 = ma

But here the acceleration of the particle is zero!! (Its velocity does not change.) This tells
us that

F1 + F2 = 0 =⇒ F2 = −F1
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and so the second force is
F2 = −F1 = (−2N)i + (6N)j

This was a simple problem just to see if you’re paying attention!

3. A 4.0 kg object has a velocity of 3.0i m
s

at one instant. Eight seconds later,
its velocity is (8.0i + 10.0j) m

s
. Assuming the object was subject to a constant net

force, find (a) the components of the force and (b) its magnitude. [Ser4 5-21]

(a) We are told that the (net) force acting on the mass was constant . Then we know that
its acceleration was also constant, and we can use the constant–acceleration results from
the previous chapter. We are given the initial and final velocities so we can compute the
components of the acceleration:

ax =
∆vx

∆t
=

[(8.0 m
s
) − (3.0 m

s
)]

(8.0 s)
= 0.63 m

s2

and

ay =
∆vy

∆t
=

[(10.0 m
s
) − (0.0 m

s
)]

(8.0 s)
= 1.3 m

s2

We have the mass of the object, so from Newton’s Second Law we get the components of
the force:

Fx = max = (4.0 kg)(0.63 m
s2

) = 2.5N

Fy = may = (4.0 kg)(1.3 m
s2

) = 5.0N

(b) The magnitude of the (net) force is

F =
√

F 2
x + F 2

y =
√

(2.5N)2 + (5.0N)2 = 5.6N

and its direction θ is given by

tan θ =
Fy

Fx

=
5.0

2.5
= 2.0 =⇒ θ = tan−1(2.0) = 63.4◦

(The question didn’t ask for the direction but there it is anyway!)

4. Five forces pull on the 4.0 kg box in Fig. 4.1. Find the box’s acceleration (a)
in unit–vector notation and (b) as a magnitude and direction. [HRW5 5-9]

(a) Newton’s Second Law will give the box’s acceleration, but we must first find the sum of
the forces on the box. Adding the x components of the forces gives:

∑

Fx = −11N + 14N cos 30◦ + 3.0N

= 4.1N
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Figure 4.1: Five forces pull on a box in Example 4

(two of the forces have only y components). Adding the y components of the forces gives:

∑

Fy = +5.0N + 14N sin 30◦ − 17N

= −5.0N

So the net force on the box (in unit-vector notation) is

∑

F = (4.1N)i + (−5.0N)j .

Then we find the x and y components of the box’s acceleration using a =
∑

F/m:

ax =

∑

Fx

m
=

(4.1N)

(4.0 kg)
= 1.0 m

s2

ay =

∑

Fy

m
=

(−5.0N)

(4.0 kg)
= −1.2 m

s2

So in unit–vector form, the acceleration of the box is

a = (1.0 m
s2

)i + (−1.2 m
s2

)j

(b) The acceleration found in part (a) has a magnitude of

a =
√

a2
x + a2

y =
√

(1.0 m
s2

)2 + (−1.2 m
s2

)2 = 1.6 m
s2

and to find its direction θ we calculate

tan θ =
ay

ax

=
−1.2

1.0
= −1.2

which gives us:
θ = tan−1(−1.2) = −50◦

Here, since ay is negative and ax is positive, this choice for θ lies in the proper quadrant.
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4.2.2 Examples of Forces

5. What are the weight in newtons and the mass in kilograms of (a) a 5.0 lb bag
of sugar, (b) a 240 lb fullback, and (c) a 1.8 ton automobile? (1 ton = 2000 lb.) [HRW5

5-13]

(a) The bag of sugar has a weight of 5.0 lb. (“Pound” is a unit of force, or weight.) Then
its weight in newtons is

5.0 lb = (5.0 lb) ·
(

4.45N

1 lb

)

= 22N

Then from W = mg we calculate the mass of the bag,

m =
W

g
=

22N

9.80 m
s2

= 2.3 kg

(b) Similarly, the weight of the fullback in newtons is

240 lb = (240 lb) ·
(

4.45N

1 lb

)

= 1070N

and then his (her) mass is

m =
W

g
=

1070N

9.80 m
s2

= 109kg

(c) The automobile’s weight is given in tons; express it in newtons:

1.8 ton = (1.8 ton)

(

2000 lb

1 ton

)

(

4.45N

1 lb

)

= 1.6 × 104 N .

Then its mass is

m =
W

g
=

1.6 × 104 N

9.80 m
s2

= 1.6 × 103 kg

6. If a man weighs 875N on Earth, what would he weigh on Jupiter, where the
free–fall acceleration is 25.9 m

s2
? [Ser4 5-12]

The weight of a mass m on the earth is W = mg where g is the free–fall acceleration on

Earth . The mass of the man is:

m =
W

g
=

875N

9.80 m
s2

= 89.3 kg

His weight on Jupiter is found using gJupiter instead of g:

WJupiter = mgJupiter = (89.3 kg)(25.9 m
s2

) = 2.31 × 103 N

The man’s weight on Jupiter is 2.31 × 103 N.
(The statement of the problem is a little deceptive; Jupiter has no solid surface! The

planet will indeed pull on this man with a force of 2.31× 103 N, but there is no “ground” to
push back!)
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40o 50o
60o

T1 T2 T1

T2

5.0 kg 10 kg

(a) (b)

T3 T3

Figure 4.2: Masses suspended by strings, for Example 7.
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Figure 4.3: Force diagrams for part (a) in Example 7.

4.2.3 Applying Newton’s Laws

7. Find the tension in each cord for the systems shown in Fig. 4.2. (Neglect the
mass of the cords.) [Ser4 5-26]

(a) In this part, we solve the system shown in Fig. 4.2(a).
Think of the forces acting on the 5.0 kg mass (which we’ll call m1). Gravity pulls down-

ward with a force of magnitude mg. The vertical string pulls upward with a force of magni-
tude T3. (These forces are shown in Fig. 4.3(a).) Since the hanging mass has no acceleration,
it must be true that T3 = m1g. This gives us the value of T3:

T3 = m1g = (5.0 kg)(9.80 m
s2

) = 49N .

Next we look at the forces which act at the point where all three strings join; these are
shown in Fig. 4.3(b). The force which the strings exert all point outward from the joining
point and from simple geometry they have the directions shown

Now this point is not accelerating either, so the forces on it must all sum to zero. The
horizontal components and the vertical components of these forces separately sum to zero.
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The horizontal components give:

−T1 cos 40◦ + T2 cos 50◦ = 0

This equation by itself does not let us solve for the tensions, but it does give us:

T2 cos 50◦ = T1 cos 40◦ =⇒ T2 =
cos 40◦

cos 50◦
T2 = 1.19T1

The vertical forces sum to zero, and this gives us:

T1 sin 40◦ + T2 sin 50◦ − T3 = 0

We already know the value of T3. Substituting this and also the expression for T2 which we
just found, we get:

T1 sin 40◦ + (1.19T1) sin 50◦ − 49N = 0

and now we can solve for T1. A little rearranging gives:

(1.56)T1 = 49N

which gives

T1 =
49N

(1.56)
= 31.5N .

Now with T1 in hand we get T2:

T2 = (1.19)T1 = (1.19)(31.5N) = 37.5N .

Summarizing, the tensions in the three strings for this part of the problem are

T1 = 31.5N T2 = 37.5N T3 = 49N .

(b) Now we study the system shown in Fig. 4.2(b).
Once again, the net force on the hanging mass (which we call m2) must be zero. Since

gravity pulls down with a a force m2g and the vertical string pulls upward with a force T3,
we know that we just have T3 = m2g, so:

T3 = m2g = (10kg)(9.80 m
s2

) = 98N .

Now consider the forces which act at the place where all the strings meet. We do as in
part (a); the horizontal forces sum to zero, and this gives:

−T1 cos 60◦ + T2 = 0 =⇒ T2 = T1 cos 60◦

The vertical forces sum to zero, giving us:

T1 sin 60◦ − T3 = 0
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But notice that since we know T3, this equation has only one unknown. We find:

T1 =
T3

sin 60◦
=

98N

sin 60◦
= 113N .

Using this is our expression for T2 gives:

T2 = T1 cos 60◦ = (113N) cos 60◦ = 56.6N

Summarizing, the tensions in the three strings for this part of the problem are

T1 = 113N T2 = 56.6N T3 = 98N .

8. A 210 kg motorcycle accelerates from 0 to 55 mi
hr

in 6.0 s. (a) What is the
magnitude of the motorcycle’s constant acceleration? (b) What is the magnitude
of the net force causing the acceleration? [HRW5 5-25]

(a) First, let’s convert some units:

55 mi
hr

= (55 mi
hr

)
(

1609m

1mi

)

(

1hr

3600 s

)

= 24.6 m
s

so that the acceleration of the motorcycle is

a =
vx − vx0

t
=

24.6 m
s
− 0

6.0 s
= 4.1 m

s2

(b) Now that we know the acceleration of the motorcycle (and its mass) we know the net
horizontal force, because Newton’s Law tells us:

∑

Fx = max = (210 kg)(4.1 m
s2

) = 8.6 × 102 N

The magnitude of the net force on the motorcycle is 8.6 × 102 N.

9. A rocket and its payload have a total mass of 5.0 × 104 kg. How large is the
force produced by the engine (the thrust) when (a) the rocket is “hovering” over
the launchpad just after ignition, and (b) when the rocket is accelerating upward
at 20 m

s2
? [HRW5 5-35]

(a) First thing: draw a diagram of the forces acting on the rocket! This is done in Fig. 4.4. If
the mass of the rocket is M then we know that gravity will be exerting a force Mg downward.
The engines (actually, the gas rushing out of the rocket) exerts a force of magnitude Fthrust

upward on the rocket.
If the rocket is hovering, i.e. it is motionless but off the ground then it has no acceleration;

so, here, ay=0. Newton’s Second Law then says:
∑

Fy = Fthrust − Mg = May = 0
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Figure 4.4: Forces acting on the rocket in Example 9
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Figure 4.5: (a) Block held in place on a smooth ramp by a horizontal force. (b) Forces acting on the block.

which gives
Fthrust = Mg = (5.0 × 104 kg)(9.80 m

s2
) = 4.9 × 105 N

The engines exert an upward force of 4.9 × 105 N on the rocket.

(b) As in part (a), gravity and thrust are the only forces acting on the rocket, but now it
has an acceleration of ay = 20 m

s2
. So Newton’s Second Law now gives

∑

Fy = Fthrust − Mg = May

so that the force of the engines is

Fthrust = Mg + May = M(g + ay) = (5.0 × 104 kg)(9.80 m
s2

+ 20 m
s2

) = 1.5 × 106 N

10. A block of mass m = 2.0 kg is held in equilibrium on an incline of angle θ = 60◦

by the horizontal force F, as shown in Fig. 4.5(a). (a) Determine the value of F ,
the magnitude of F. (b) Determine the normal force exerted by the incline on
the block (ignore friction). [Ser4 5-33]
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Figure 4.6: Masses m1 and m2 are connected by a cord; m1 slides on frictionless slope.

(a) The first thing to do is to draw a diagram of the forces acting on the block, which we do
in Fig. 4.5(b). Gravity pulls downward with a force mg. The applied force, of magnitude F ,
is horizontal. The surface exerts a normal force N on the block; using a little geometry, we
see that if the angle of the incline is 60◦, then the normal force is directed at 30◦ above the
horizontal, as shown in Fig. 4.5(b). There is no friction force from the surface, so we have
shown all the forces acting on the block.

Oftentimes for problems involving a block on a slope it is easiest to use the components
of the gravity force along the slope and perpendicular to it. For this problem, this would
not make things any easier since there is no motion along the slope.

Now, the block is in equilibrium, meaning that it has no acceleration and the forces sum
to zero. The fact that the vertical components of the forces sum to zero gives us:

N sin 30◦ − mg = 0 =⇒ N =
mg

sin 30◦

Substitute and get:

N =
(2.0 kg)(9.80 m

s2
)

sin 30◦
= 39.2N .

The horizontal forces also sum to zero, giving:

F −N cos 30◦ = 0 =⇒ F = N cos 30◦ = (39.2N) cos 30◦ = 33.9N .

The applied force F is 33.9N.

(b) The magnitude of the normal force was found in part (a); there we found:

N = 39.2N .

11. A block of mass m1 = 3.70 kg on a frictionless inclined plane of angle θ = 30.0◦ is
connected by a cord over a massless, frictionless pulley to a second block of mass
m2 = 2.30 kg hanging vertically, as shown in Fig. 4.6. What are (a) the magnitude
of the acceleration of each block and (b) the direction of the acceleration of m2?
(c) What is the tension in the cord? [HRW5 5-58]
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Figure 4.7: The forces acting on m1

(a) Before thinking about the forces acting on these blocks, we can think about their motion.
m1 is constrained to move along the slope and m2 must move vertically. Because the two
masses are joined by a string, the distance by which m1 moves up the slope is equal to the
distance which m2 moves downward, and the amount by which m1 moves down the slope
is the amount by which m2 moves upward. The same is true of their accelerations; if it
turns out that m1 is accelerating up the slope, that will be the same as m2’s downward
acceleration.

Now we draw “free–body diagrams” and invoke Newton’s Second Law for each mass.
Consider all the forces acting on m1. These are shown in Fig. 4.7Ṫhe force of gravity, with
magnitude m1 pulls straight down. Here, looking ahead to the fact that motion can only
occur along the slope it has decomposed into its components perpendicular to the surface
(with magnitude m1 cos θ) and down the slope (with magnitude m1 sin θ). The normal force
of the surface has magnitude N and points... normal to the surface! Finally the string pulls
up with slope with a force of magnitude T , the tension in the string.

Suppose we let x be a coordinate which measures movement up the slope. (Note, we are
not saying that the block will move up the slope, this is just a choice of coordinate. Let y be
a coordinate going perpendicular to the slope. We know that there is no y acceleration so
the components of the forces in the y direction must add to zero. This gives:

N − m1g cos θ = 0 =⇒ N = m1g cos θ

which gives the normal force should we ever need it. (We won’t.) Next, the sum of the x
forces gives m1ax, which will not be zero. We get:

T − m1g sin θ = m1ax (4.3)

Here there are two unknowns, T and ax.
The free–body diagram for mass m2 is shown in Fig. 4.8. The force of gravity, m2g

pulls downward and the string tension T pulls upward. Suppose we use a coordinate x′

which points straight down. (This is a little unconventional, but you can see that there is a
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Figure 4.8: The forces acting on m2. Coordinate x
′ points downward.

connection with the coordinate x used for the motion of m1. Then the sum of forces in the
x′ direction gives m2ax′:

m2g − T = m2ax′

Now as we argued above, the accelerations are equal: ax = ax′. This gives us:

m2g − T = m2ax (4.4)

At this point, the physics is done and the rest of the problem is doing the math (algebra)
to solve for ax and T . We are first interested in finding ax. We note that by adding Eqs. 4.3
and 4.4 we will eliminate T . Doing this, we get:

(T −m1g sin θ) + (m2g − T ) = m1ax + m2ax

this gives:
m2g − m1g sin θ = (m1 + m2)ax

and finally:

ax =
(m2 − m1g sin θ)g

m1 + m2

Substituting the given values, we have:

ax =
(2.30 kg − 3.70 kg sin 30◦)(9.80 m

s2
)

(3.70 kg + 2.30 kg)

= +0.735 m
s2

So ax = +0.735 m
s2

. What does this mean? It means that the acceleration of m1 up the slope
and m2 downwards has magnitude 0.735 m

s2
. The plus sign in our result for ax is telling us

that the acceleration does go in the way we (arbitrarily) set up the coordinates. If we had
made the opposite (“wrong”) choice for the coordinates then our acceleration would have
come out with a minus sign.

(b) We’ve already found the answer to this part in our understanding of the result for part
(a). Mass m1 accelerates up the slope; mass m2 accelerates vertically downward .
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Acme
Bananas

Figure 4.9: Monkey runs up the rope in Example 12.

(c) To get the tension in the string we may use either Eq. 4.3 or Eq. 4.4. Using 4.4 gives:

m2g − T = m2ax =⇒ T = m2g − m2ax = m2(g − ax)

Substituting everything,

T = (2.30 kg)(9.80 m
s2
− (0.735 m

s2
)) = 20.8N

12. A 10 kg monkey climbs up a massless rope that runs over a frictionless tree
limb (!) and back down to a 15 kg package on the ground, as shown in Fig. 4.9.
(a) What is the magnitude of the least acceleration the monkey must have if
it is to lift the package off the ground? If, after the package has been lifted
the monkey stops its climb and holds onto the rope, what are (b) the monkey’s
acceleration and (c) the tension in the rope? [HRW5 5-64]

(a) Before we do anything else, let’s understand what forces are acting on the two masses
in this problem. The free–body diagrams are shown in Fig. 4.10. The monkey holds onto
the rope so it exerts an upward force of magnitude T , where T is the tension in the rope.
Gravity pulls down on the monkey with a force of magnitude mg, where m is the mass of
the monkey. These are all the forces. Note that they will not cancel since the problem talks
about the monkey having an acceleration and so the net force on the monkey will not be
zero.

The forces acting on the box are also shown. Gravity pulls downward on the box with a
force of magnitude Mg, M being the mass of the box. The rope pulls upward with a force
T , If the box is resting on the ground, the ground will be pushing upward with some force
Fground. (Here, the ground cannot pull downward.) However when the box is not touching
the ground then Fground will be zero.
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Figure 4.10: The forces acting on the two masses in Example 12.

In the first part of the problem, the monkey is moving along the rope. It is not stuck
to any point of the rope, so there is no obvious relation between the acceleration of the
monkey and the acceleration of the box. Suppose we let ay,monkey be the vertical acceleration
of the monkey and ay,box be the vertical acceleration of the box. Then from our free–body
diagrams, Newton’s Second Law gives the acceleration of the monkey:

T −mg = may,monkey

When the box is on the ground its acceleration is zero and then T + Fgr = mg. But when
the box is off then ground then we have:

T − Mg = Mabox (Box off the ground)

In the first part of the problem we are solving for the condition that the monkey climbs
just barely fast enough for the box to be lifted off the ground. If so, then the ground would
exert no force but the net force on the box would be so small as to be virtually zero; the box
has a very, very tiny acceleration upwards. From this we know:

T − Mg = 0 =⇒ T = Mg

and substituting this result into the first equation gives

Mg − mg = mamonkey =⇒ amonkey =
(M − m)g

m

Substituting the given values,

amonkey =
(15kg − 10 kg)(9.80 m

s2
)

10 kg
= 4.9 m

s2

The monkey must pull himself upwards so as to give himself an acceleration of 4.9 m
s2

. Any-
thing less and the box will remain on the ground.

(b) Next, suppose that after climbing for while (during which time the box has been rising
off the ground) the monkey grabs onto the rope. What new condition does this give us?
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Now it is true that the distance that the monkey moves up is the same as the distance which
the box moves down. The same is true of the velocities and accelerations of the monkey and
box, so in this part of the problem (recalling that I defined both accelerations as being in
the upward sense),

amonkey = −abox .

This condition is not true in general, but here it is because we are told that the monkey is
holding fast to the rope.

If you recall the example of the Atwood machine from your textbook or lecture notes,
this is the same physical situation we are dealing with here. We expect the less massive
monkey to accelerate upwards and the more massive box to accelerate downwards. Let’s use
the symbol a for the monkey’s vertical acceleration; then the box’s vertical acceleration is
−a and our equations are:

T − mg = ma

and

T − Mg = M(−a) .

At this point the physics is done and the rest is math (algebra) to solve for the two unknowns,
T and a. Since the first of these equations gives T = mg + ma, substituting this into the
second equation gives:

mg + ma −Mg = −Ma =⇒ ma + Ma = Mg − mg

which gives:

(M + m)a = (M − m)g =⇒ a =
(M − m)

(M + m)
g

Plugging in the numbers gives

a =
(15.0 kg − 10.0 kg)

(15.0 kg + 10.0 kg)
(9.80 m

s2
) = 2.0 m

s2
.

When the monkey is holding tight to the rope and both masses move freely, the monkey’s
acceleration is 2.0 m

s2
upwards.

(c) Now that we have the acceleration a for this part of the problem, we can easily substitute
into our results in part (b) and find the tension T . From T − mg = ma we get:

T = mg + ma = m(g + a) = (10.0 kg)(9.80 m
s2

+ 2.0 m
s2

) = 118N .

The tension in the rope is 118N.

13. A mass M is held in place by an applied force F and a pulley system as shown
in Fig. 4.11. The pulleys are massless and frictionless. Find (a) the tension in
each section of rope, T1, T2, T3, T4, and T5, and (b) the magnitude of F. [Ser4 5-65]
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T1

T2
T3

T4

T5

M

F

Figure 4.11: Crudely-drawn hand supports a mass M by means of a rope and pulleys

(a) We note first that the mass M (and therefore everything else) is motionless. This simpli-
fies the problem considerably! In particular, every mass in this problem has no acceleration
and so the total force on each mass is zero.

We have five rope tensions to find here, so we’d better start writing down some equations,
fast! Actually, a few of them don’t take much work at all; we know that when we have the
(idealized) situation of massless rope passing around a frictionless massless pulley, the string
tension is the same on both sides. As shown in the figure, it is a single piece of rope that
wraps around the big upper pulley and the lower one, so the tensions T1, T2 and T3 must be
the same:

T1 = T2 = T3

Not bad so far!
Next, think about the forces acting on mass M . This is pretty simple... the force of

gravity Mg pulls down, and the tension T5 pulls upward. That’s all the forces but they sum
to zero because M is motionless. So we must have

T5 = Mg .

Next, consider the forces which act on the small pulley. These are diagrammed in
Fig. 4.12(a). There is a downward pull of magnitude T5 from the rope which is attached
to M and also upward pulls of magnitude T2 and T3 from the long rope which is wrapped
around the pulley. These forces must sum to zero, so

T2 + T3 − T5 = 0

But we already know that T5 = Mg and that T2 = T3 so this tells us that

2T2 − Mg = 0

which gives

T2 =
Mg

2
=⇒ T3 = T2 =

Mg

2
.
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(a) (b)

T5
T3T2T1

T2 T3

T4

Figure 4.12: (a) Forces on the small (lower) pulley. (b) Forces on the large (upper) pulley.

We also have: T1 = T2 = Mg/2.
Next, consider the forces on the large pulley, shown in Fig. 4.12(b). Tension T4 (in the

rope attached to the ceiling) pulls upward and tensions T1, T2 and T3 pull downward. These
forces sum to zero, so

T4 − T1 − T2 − T3 = 0 .

But T4 is the only unknown in this equation. Using our previous answers,

T4 = T1 + T2 + T3 =
Mg

2
+

Mg

2
+

Mg

2
=

3Mg

2

and so the answers are:

T1 = T2 = T3 =
Mg

2
T4 =

3Mg

2
T5 = Mg

(b) The force F is the (downward) force of the hand on the rope. It has the same magnitude
as the force of the rope on the hand , which is T1, and we found this to be Mg/2. So
F = Mg/2.

14. Mass m1 on a frictionless horizontal table is connected to mass m2 through
a massless pulley P1 and a massless fixed pulley P2 as shown in Fig. 4.13. (a)
If a1 and a2 are the magnitudes of the accelerations of m1 and m2 respectively,
what is the relationship between these accelerations? Find expressions for (b)
the tensions in the strings and (c) the accelerations a1 and a2 in terms of m1, m2

and g. [Ser4 5-46]

(a) Clearly, as m2 falls, m1 will move to the right, pulled by the top string. But how do the
magnitudes of the displacements, velocities and accelerations of m2 and m1 compare? They
are not necessarily the same. Indeed, they are not the same.

Possibly the best way to show the relation between a1 and a2 is to do a little math; for
a very complicated system we would have to do this anyway, and the practice won’t hurt.
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m1

m2

P1

P2

Figure 4.13: System of masses and pulleys for Example 14.

x

l
xblock

To hanging mass

Figure 4.14: Some geometry for Example 14.
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(a) (b) (c)

T1

N

T1

T1

m2g

T2

T2

m1g

Figure 4.15: Forces on the masses (and moving pulley) in Example 14. (a) Forces on m1. (b) Forces on
the moving (massless) pulley. (c) Forces on m2.

Focus on the upper mass (m1) and pulley P1, and consider the lengths labelled in Fig. 4.14.
x measures the distance from the wall to the moving pulley; clearly the position of m2 is also
measured by x. ` is the length of string from m1 to the pulley. xblock measures the distance
from the wall to m1. Then:

xblock = x − ` .

This really ignores the bit of string that wraps around the pulley, but we can see that it
won’t matter.

Now the total length of the string is L = x + ` and it does not change with time. Since
we have ` = L − x, we can rewrite the last equation as

xblock = x − (L − x) = 2x − L

Take a couple time derivatives of this, keeping in mind that L is a constant. We get:

d2xblock

dt2
= 2

d2x

dt2

But the left side of this equation is the acceleration of m1 and the right side is the (magnitude
of the) acceleration of m2. The acceleration of m1 is twice that of m2:

a1 = 2a2

We can also understand this result by realizing that when m2 moves down by a distance
x, a length 2x of the string must go from the “underneath” section to the “above” section in
Fig. 4.14. Mass m1 follows the end of the string so it must move forward by a distance 2x.
Its displacement is always twice that of m2 so its acceleration is always twice that of m2.

(b) Now we try to get some information on the forces and accelerations, and we need to draw
free–body diagrams. We do this in Fig. 4.15. Mass m1 has forces m1g acting downward, a
normal force from the table N acting upward, and the string tension T1 pulling to the right.
The vertical forces cancel since m1 has only a horizontal acceleration, a1. Newton’s Second
Law gives us:

T1 = m1a1 (4.5)
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The pulley has forces acting on it, as shown in Fig. 4.15(b). The string wrapped around
it exerts its pull (of magnitude T1) both at the top and bottom so we have two forces of
magnitude T1 pulling to the left. The second string, which has a tension T2, pulls to the
right with a force of magnitude T2.

Now this is a slightly subtle point, but the forces on the pulley must add to zero because
the pulley is assumed to be massless . (A net force on it would give it an infinite acceleration!)
This condition gives us:

T2 − 2T1 = 0 (4.6)

Lastly, we come to m2. It will accelerate downward with acceleration a2. Summing the
downward forces, Newton’s Second Law gives us:

m2g − T2 = m2a2 (4.7)

For good measure, we repeat the result found in part (a):

a1 = 2a2 (4.8)

In these equations, the unknowns are T1, T2, a1 and a2. . . four of them. And we have
four equations relating them, namely Eqs. 4.5 through 4.8. The physics is done. We just do
algebra to finish up the problem.

There are many ways to do the algebra, but I’ll grind through it in following way: Sub-
stitute Eq. 4.8 into Eq. 4.5 and get:

T1 = 2m1a2

Putting this result into Eq. 4.6 gives

T2 − 2T1 = T2 − 4m1a2 = 0 =⇒ T2 = 4m1a2

and finally using this in Eq. 4.7 gives

m2g − 4m1a2 = m2a2

at which point we can solve for a2 we find:

m2g = a2(4m1 + m2) =⇒ a2 =
m2g

(4m1 + m2)
(4.9)

Having solved for one of the unknowns we can quickly find the rest. Eq. 4.8 gives us a1:

a1 = 2a2 =
2m2g

(4m1 + m2)
(4.10)

Then Eq. 4.8 gives us T1:

T1 = m1a1 =
2m1m2g

(4m1 + m2)
(4.11)
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Finally, since Eq. 4.6 tells us that T2 = 2T1 we get

T2 =
4m1m2g

(4m1 + m2)
(4.12)

Summarizing our results from Eqs. 4.9 through 4.12, we have:

T1 =
2m1m2g

(4m1 + m2)
T2 =

4m1m2g

(4m1 + m2)

for the tensions in the two strings and:

(c)

a1 =
2m2g

(4m1 + m2)
a2 =

m2g

(4m1 + m2)

for the accelerations of the two masses.


