
Chapter 12 
Kinetic Theory of Gases: Equipartition of Energy and Ideal Gas Law 

 
12.1 Introduction 
 
Macroscopic Description of Gas 
  
A gas is a system of particles occupying a volume of space that is very large compared to 
size ( ) of any typical atom or molecule. The state of the gas can be described by a 
few macroscopically measurable quantities that completely determine the system. The 
volume of the gas in a container can be measured by the size the container. The pressure 
of a gas can be measured using a pressure gauge. The temperature can be measured with 
a thermometer. The mass, or number of moles or number of molecules, can measure the 
quantity of matter. 
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Atomistic Description of Gas 
 
A gas consists of a very large number of particles (typically  or many orders of 
magnitude more). Each atomic particle can be specified by its position and velocity.  
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Macroscopic vs. Atomistic Description 
  
How can we use the laws of mechanics that describe the motions and interactions of 
individual atomic particles to predict macroscopic properties of the system such as 
pressure, volume, and temperature? We cannot know exactly where and with what 
velocities all the particles are moving so we must take averages. In addition, we need 
quantum mechanical laws to describe how particles interact. In fact, the inability of 
classical mechanics to predict how the heat capacity of a gas varies with temperature was 
the first experimental suggestion that a new set of principles (quantum mechanics) 
operates at the scale of the size of atoms. However, as a starting point we shall use 
classical mechanics to deduce the ideal gas law, with only a minimum of additional 
assumptions about the internal energy of a gas.  
 
Atoms, Moles, and Avogadro’s Number  
 
The atomic mass of one neutral carbon-12 atom is defined to be exactly 12 atomic mass 
units (12 u). By definition one mole of carbon atoms has mass equal to exactly 12 grams. 
The results of many experiments have determined that there are  molecules in 
one mole of carbon 12 atoms. The number of molecules per mole is called the Avogadro 
constant, 

236.022 10×

 
 23 16.0221415 10 molAN −= × ⋅ . (12.1.1) 
 
(For the latest, more precise values of this and other physical constants, see the Particle 
Data Group’s list at http://pdg.lbl.gov/2006/reviews/consrpp.pdf) 
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12.2 Temperature and Thermal Equilibrium 
 
On a cold winter day, suppose you want to warm up by drinking a cup of tea. You start 
by filling up a kettle with water from the cold water tap (water heaters tends to add 
unpleasant contaminants and reduce the oxygen level in the water). You place the kettle 
on the heating element of the stove and allow the water to boil briefly. You let the water 
cool down slightly to avoid burning the tea leaves or creating bitter flavors and then pour 
the water into a pre-heated teapot containing a few teaspoons of tea; the tea leaves steep 
for a few minutes and then you enjoy your drink.  
 
 When the kettle is in contact with the heating element of the stove, energy flows 
from the heating element to the kettle and then to the water. The conduction of energy is 
due to the contact between the objects. The random motions of the atoms in the heating 
element are transferred to the kettle and water via collisions. We can attribute different 
degrees of “hotness” (based on our experience of inadvertently touching the kettle and 
the water). Temperature is a measure of the “hotness” of a body. When two objects that 
are initially at different temperatures are put in contact, the “colder” object heats up while 
the “hotter” object cools down, until they reach the same temperature, a state we refer to 
as thermal equilibrium. Temperature is that property of a system that determines whether 
or not a system is in thermal equilibrium with other systems. 
 
 Consider two systems A and B that are separated from each other by an adiabatic 
boundary (adiabatic = no heat passes through) that does not allow any thermal contact. 
Both A and B are placed in thermal contact with a third system C until thermal 
equilibrium is reached. If the adiabatic boundary is then removed between A and B, no 
thermal energy will flow between A and B. Thus 
 

Two systems in thermal equilibrium with a third system are in thermal 
equilibrium with each other. 

 
Temperature Scales 
 
Any device that measures a thermometric property of an object, for instance the 
expansion of mercury, is called a thermometer. Many different types of thermometers can 
be constructed, making use of different thermometric properties. Different devices will 
measure different temperatures. 
 
 The gas thermometer measures temperature based on the pressure of a gas at 
constant volume and is used as the standard thermometer, because the variations between 
different gases can be greatly reduced when low pressures are used. A schematic device 
of a gas thermometer is shown in Figure 12.1. 
 
A thermometer needs to have two scale points, for example the height of the column of 
mercury (the height is a function of the pressure of the gas) when the bulb is placed in 
thermal equilibrium with ice water and in thermal equilibrium with standard steam.  
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Figure 12.1 Constant volume gas thermometer. 
 
A linear scale for temperature can be drawn based on the pressure and is given by 
 
 0T a P T= +  (12.2.1) 
 
where  is some constant and a 0 0T =  is the temperature when the pressure is zero. 
 
The thermal expansion of mercury was commonly used as the thermometric property 
because mercury has nearly uniform expansion when compared to gas-thermometer 
scale. Other materials show slight variation from uniform expansion. 
 
At constant volume, and at ordinary temperatures, the pressure of gases is proportional to 
the temperature, 
 
  (12.2.2) P T∼
 
(note that the above necessitates using 0 0T = ). 
The gas in the bulb exhibits a linear relationship between temperature and pressure. By 
this linearity, the ratio of temperatures between any two states of a system is then 
measured by the ratio of the pressures of those states,  
 

 1

2 2

T P
T P

1= . (12.2.3) 

 
To determine a temperature scale (in order to fix the constant  in Equation a (12.2.1)), a 
standard state must be chosen as a reference point. The standard fixed state for 
thermometry is the triple point of water, the state in which ice, water, and water vapor 
coexist. This state occurs at only one definite value of temperature and pressure. By 
convention (1954) the temperature of the triple point of water to assigned to be exactly 

 on the Kelvin scale, at a water-vapor pressure of 610 . (The SI unit for 
pressure is the pascal, 
273.16 K Pa

21 Pa = 1 N m−⋅ .)  
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Fix the constant  as follows: Let  be the value of the pressure  at the triple point 
in the gas thermometer. Set the constant  according to 

a TPP P
a

 

 
TP

273.16 Ka
P

= . (12.2.4) 

 
Hence the temperature at any value of  is then P
 

 
TP

273.16 K( )T P a P P
P

= = . (12.2.5) 

 
Different gases will have different values for the pressure , hence different 
temperatures . When the pressure in the bulb at the triple point is gradually reduced 
to near zero, all gases approach the same pressure reading and hence the same 
temperature. The limit of the temperature  as  is called the ideal-gas 
temperature and is given by the equation 

P
( )T P

( )T P TP 0P →

 

 
TP 0

TP

273.16 K( ) lim
P

T P P
P→

= . (12.2.6) 

 
This definition of temperature is independent of the type of gas used in the gas 
thermometer. The lowest possible temperatures measured in gas thermometers use , 
because this gas becomes a liquid at a lower temperature than any other gas. In this way, 
temperatures down to can be measured. We cannot yet define the temperature of 
absolute zero, , using this approach. 

3He

0.5 K
0 K

 
The commonly used Celsius scale employs the same size for each degree as the Kelvin 
scale, but the zero point is shifted by degrees so that the triple point of water has 

a Celsius temperature of , 

273.15

0.01 CD
 

 ( ) ( )C K 273.15 CT θ= −D D , (12.2.7) 

 
and the freezing point of water at standard atmospheric pressure is . The Fahrenheit 
scale is related to the Celsius scale by 

0 CD

 

 ( ) ( )9F C 3
5

T T= +D D 2 FD . (12.2.8) 
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The freezing point of pure water at standard atmospheric pressure occurs at  and 

. The boiling point of pure water at standard atmospheric pressure is 100  and 
. 

0 CD

32 FD CD

212 FD
 
12.3 Internal Energy of Gas 
 
The internal energy of a gas is defined to be the total energy of the gas when the center of 
mass of the gas is at rest. The internal energy consists of the kinetic energy, K , of the 
center-of-mass motions of the molecules; the potential energy associated with the 
intermolecular interactions, ; and the potential energy associated with the 
intramolecular interactions, ; 

interU

intraU
 
 internal inter intraE K U U= + + . (12.3.1) 
 
Generally, the intermolecular force associated with the potential energy is repulsive for 
small  and attractive for large r , where  is the separation between molecules. At low 
temperatures, when the average kinetic energy is small, the molecules can form bound 
states with negative energy 

r r

internal 0E <  and condense into liquids or solids. The 
intermolecular forces act like restoring forces about an equilibrium distance between 
atoms, a distance at which the potential energy is a minimum. For energies near the 
potential minimum, the atoms vibrate like springs. For larger (but still negative) energies, 
the atoms still vibrate but no longer like springs and with larger amplitudes, undergoing 
thermal expansion. At higher temperatures, due to larger average kinetic energies, the 
internal energy becomes positive, . In this case, molecules have enough energy 
to escape intermolecular forces and become a gas. 

internal 0E >

 
Degrees of Freedom 
 
Each individual gas molecule can translate in any spatial direction. In addition, the 
individual atoms can rotate about any axis. Multi-atomic gas molecules may undergo 
rotational motions associated with the structure of the molecule. Additionally, there may 
be intermolecular vibrational motion between nearby gas particles, and vibrational 
motion arising from intramolecular forces between atoms that form the molecules.  
Further, there may be more contributions to the internal energy due to the internal 
structure of the individual atoms. Any type of motion that contributes a quadratic in some 
generalized coordinate to the internal energy is called a degree of freedom. Examples 
include position, , speed, , or angular velocity for rotational motion, 2(1/ 2) kx 2(1/ 2) mv

2(1/ 2) Iω  where I  is a moment of inertia, discussed in Chapter 13.  A single atom can 
have three translational degrees of freedom and three rotational degrees of freedom, as 
well as internal degrees of freedom associated with its atomic structure. 
 
According to our classical theory of the gas, all of these modes (translational, rotational, 
vibrational) should be equally occupied at all temperatures but in fact they are not. This 
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important deviation from classical physics was historically the first instance where a 
more detailed model of the atom was seen to be needed to describe correctly the 
experimental observations. 
 
Not all of the three rotational degrees of freedom contribute to the energy at all 
temperatures. As an example, a nitrogen molecule, , has three translational degrees of 
freedom but only two rotational degrees of freedom at temperatures lower than the 
temperature at which the diatomic molecule would dissociate.  Diatomic nitrogen also 
has an intramolecular degree of freedom that does not contribute to the internal energy at 
room temperatures. As discussed in Section 12.6,  constitutes most ( ) of the 
earth’s atmosphere. 

2N

2N 78%∼

 
Equipartition of Energy 
 
We shall make our first assumption about how the internal energy distributes itself 
among  gas molecules, as follows: N
 

Each independent degree of freedom has an equal amount of energy equal to , (1/ 2)kT
 

where the constant k  is called the Boltzmann constant and is equal to  
 

-23 1 1.3806505 10  J  Kk −= × ⋅ . 
 

The total internal energy of the ideal gas is then  
 

 internal
1(# of degrees of freedom)
2

E N= kT . (12.3.2) 

 
This equal division of the energy is called the equipartition of the energy. (12.3.3) 
 
The Boltzmann constant is an arbitrary constant and fixes a choice of temperature scale. 
Its value is chosen such that the temperature scale in Equation (12.3.2) closely agrees 
with the temperature scales discussed in Section 12.2.  
 
12.3.1 Example: Diatomic nitrogen gas  
 
What is the internal energy of the diatomic  gas?  2N
 
Answer: As discussed above, at high temperatures, but low enough for nitrogen to form 
diatomic molecules, there are six degrees of freedom, so 
 

 internal
1(# of degrees of freedom) 3
2

E N= kT N kT= . (12.3.4) 
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At room temperature, the internal energy is due to only the five degrees of freedom 
associated with the three translational and two rotational degrees of freedom, 
 

 internal
5
2

E N kT= . (12.3.5) 

 
 
12.4 Ideal Gas  
 
Consider a gas consisting of a large number of molecules inside a rigid container. We 
shall assume that the volume occupied by the molecules is small compared to the volume 
occupied by the gas, that is, the volume of the container (dilute gas assumption). We also 
assume that the molecules move randomly and satisfy Newton’s Laws of Motion. The 
gas molecules collide with each other and the walls of the container. We shall assume 
that all the collisions are instantaneous and any energy converted to potential energy 
during the collision is recoverable as kinetic energy after the collision is finished. Thus 
the collisions are elastic and have the effect of altering the direction of the velocities of 
the molecules but not their speeds. We also assume that the intermolecular interactions 
contribute negligibly to the internal energy.  
 
 
Monatomic Gas Internal Energy 
 
An ideal monatomic gas atom has no internal structure, so we treat it as point particle. 
There are no possible rotational degrees of freedom or internal degrees of freedom; the 
ideal gas has only three degrees of freedom, and the internal energy of the ideal gas is 
 

 internal
3
2

E N kT= . (12.4.1) 

 
Equation (12.4.1) is called the thermal equation of state of a monatomic ideal gas. The 
average kinetic energy of each ideal gas atom is then 
 

 ( )2

ave

1
2 2

m v kT=
3  (12.4.2) 

 
where ( )2

ave
v  is the average of the square of the speeds. The temperature of this ideal gas 

is proportional to the average kinetic of the ideal gas molecule. It is an incorrect inference 
to say that temperature is defined as the mean kinetic energy of gas.  At low temperatures 
or non-dilute densities, the kinetic energy is no longer proportional to the temperature. 
For some gases, the kinetic energy depends on number density and a more complicated 
dependence on temperature than that given in Equation (12.4.2).1

                                                 
1 Ralph Baierlein, The meaning of Temperature, The Physics Teacher, Feb 1990, pp. 94-
96. 
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12.5 Pressure of an Ideal Gas 
 
Consider an ideal gas consisting of a large number  of molecules inside a container of 
volume  and pressure . The gas molecules collide elastically with each other and the 
walls of the container. The pressure that the gas exerts on the container is due to the 
elastic collisions of the gas molecules with the walls of the container. We shall now use 
only the principles of conservation of energy and momentum to model collisions between 
the gas molecules and the walls of the container in order to determine the pressure of the 
gas in terms of the volume V , particle number  and Kelvin temperature T .   

N
V P

N
 
We shall begin by considering the collision of one molecule with one of the walls of the 
container, oriented with a unit normal vector pointing out of the container in the positive 

-direction (Figure 12.2). Suppose the molecule has mass  and is moving with velocity 
. Since the collision with the wall is elastic, the -and 

î m
ˆ ˆ ˆ

x y zv v v= + +v i jG k y z -components 
of the velocity of the molecule do not change and the x -component of the velocity 
changes direction (Figure 12.2). 
 
 

 
 

Figure 12.2 Collision of a gas molecule with a wall of a container 
 
The impulse that the wall delivers to the molecule is given by  
 
 molecule,wall

ˆ2 xt mΔ = Δ = −F p
G

v iG . (12.5.1) 
 
We now consider the effect of the collisions of a large number of molecules with random 
motion.  For our purposes, “random” will be taken to mean that any direction of motion is 
possible, and the distribution of velocity components is the same for each direction. 
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How many of the molecules will collide within a given area A  of the wall normal to the 
x -direction in some fixed time interval tΔ ? On average half the molecules have a 
positive x+ -component of velocity. Therefore half the molecules contained inside a 
cylindrical volume of cross sectional area A  and length xv tΔ  will strike the wall within a 
given area A  during the time interval tΔ  (note that in Figure 12.2 and Equation (12.5.1) 

). In Figure 12.3 each gas molecule is depicted with a speed equal to the magnitude 
of the 

0xv >
x -component of the velocity. (Note that only the magnitude of the x -component 

of the average velocity matters because the same number of particles will enter and leave 
from the sides of the cylindrical body during the time interval tΔ .) The mass density of 
gas molecules is ρ .  
 

 
 
Figure 12.3 Half the particles inside the cylinder that will hit the wall in a    

time interval tΔ  
 
The total mass of the molecules with positive x+ -component of velocity contained in the 
cylinder is  
 

 total

2 xm Av tρ
= Δ . (12.5.2) 

 
Each one of these particles that strike the wall will change its x -component of the 
momentum by a factor ˆ2 xmvΔ = −pG i  due to the collision. The total impulse that the wall 
exerts on the molecules in the tube is then 
 

 

total total
gas,wall

2

ˆ2

ˆ2 .
2

x

x x x

t m v

Av t v Av tρ ρ

Δ = Δ = −

⎛ ⎞ ˆ= − Δ = −⎜ ⎟
⎝ ⎠

F p i

i i

G

Δ

G

 (12.5.3) 

 
Therefore the force of the wall on the molecules is independent of the time interval tΔ  
and is given by 
 
 2

gas,wall
ˆ

xAvρ= −F i
G

. (12.5.4) 
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By Newton’s Third Law, the force of the gas molecules on the wall is then  
 
 2

wall,gas
ˆ

xAvρ=F i
G

. (12.5.5) 
 
The pressure that the gas exerts on the wall is the magnitude of this force divided by the 
cross sectional area of the cylindrical tube, 
 

 wall,gas 2
xP

A
vρ= =

F
G

. (12.5.6) 

 
At this point, we have to make the argument that the total pressure will be the same as 
that above, Equation (12.5.6), with the square of the x -component of the velocity 
replaced by the average of the square of the x -component of the velocity, ( )2

avexv .  While 

this is not difficult to show, the derivation will not be part of these notes.  The essential 
part of this derivation would be to describe “that contribution to the pressure due to the 
molecules with x -component of velocity xv ” and a similar contribution to the mass 
density. 
 
From symmetry, the average square of the x -, - and y z -components of the velocity of 
the molecules are equal, 
 
 ( ) ( ) ( )2 2 2

ave ave avex y zv v v= = . (12.5.7) 

 
Therefore the average square ( )2

ave
v of the velocity is equal to the sum of the average of 

the squares of the components, 
 
 ( ) ( ) ( ) ( ) ( )2 2 2 2 2

ave ave ave ave ave
3x y z xv v v v v= + + = . (12.5.8) 

 
The square root of ( )2

ave
v  is called the root-mean-square (“rms”) speed of the molecules. 

Thus the pressure of the gas is given by 
 

 ( )2

ave

1
3

P vρ= . (12.5.9) 

 
The density of the gas is the total mass of the gas divided by the volume V  of the 
container, total /M Vρ = . The total mass of the gas is equal to the product of the number 
of gas molecules and the mass of each individual gas molecule, totalM N m= . Thus the 
pressure is 
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 ( ) ( ) ( )
total

2 2

ave ave ave

1 1 1
3 3 3

M N mP v v v
V V

ρ
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
2 . (12.5.10) 

 
Now we note that ( )2

ave
v  represents three translational degrees of freedom, each of which 

has an energy , so that ( )1/ 2 kT
 

 ( ) ( )2 2

ave ave

1 2 1 2 3
3 3 2 3 2

m v m v kT kT⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= . (12.5.11) 

 
Thus, Equation (12.5.10) can be re-expressed as 
 
 PV N kT= . (12.5.12) 
 
 
Equation (12.5.12) is known as the ideal gas equation of state also known as the Perfect 
Gas Law or Ideal Gas Law.  
 
The total number of molecules in the gas m AN n N=  where  is the number of moles 
and 

mn

AN  is Avogadro’s constant (the number of molecules in a mole;  see Section 13.1.). 
The ideal gas law becomes 
 
 m APV n N kT= . (12.5.13) 
 
The universal gas constant is 18.31 J K moleAR k N 1− −= = ⋅ ⋅ .  The ideal gas law can be 
re-expressed as 
 
 mPV n RT= . (12.5.14) 
 
Although we started with atomistic description of the collisions of individual gas 
molecules satisfying the principles of conservation of energy and momentum, we ended 
up with a relationship between the macroscopic variables pressure, volume, and 
temperature that are measurable properties of the system.  
 
One important consequence of the Ideal Gas Law is that equal volumes of different ideal 
gases at the same temperature and pressure must contain the same number of molecules,  
 

 1 PVN
k T

= . (12.5.15) 

 
When gases combine in chemical reactions at constant temperature and pressure, the 
numbers of each type of gas molecule combine in simple integral proportions. This 
implies that the volumes of the gases must always be in simple integral proportions. 
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Avogadro used this last observation about gas reactions to define one mole of a gas as a 
unit for large numbers of particles and specified that one mole contains 

.   236.02 10  molecules×
 
12.6 Atmospheric Pressure 
 
The atmosphere is a very complex dynamic interaction between many different species of 
atoms and molecules. The average percentage compositions of the eleven most abundant 
gases in the atmosphere up to an altitude of 25 km are shown in Table 1. 
 

Table 1: Average composition of the atmosphere up to an altitude of 25 km. 
  

Gas Name Chemical Formula Percent Volume 
Nitrogen N2 78.08% 
Oxygen O2  20.95% 
*Water H2O 0 to 4% 
Argon Ar 0.93% 
*Carbon Dioxide CO2 0.0360% 
Neon Ne  0.0018% 
Helium He  0.0005% 
*Methane CH4 0.00017% 
Hydrogen H2 0.00005% 
*Nitrous Oxide N2O 0.00003% 
*Ozone O3  0.000004% 

 
* variable gases  
 
In the atmosphere, nitrogen forms a diatomic molecule with molar mass 

 and oxygen also forms a diatomic molecule  with molar 

mass . Since these two gases combine to form 99% of the 
atmosphere, the average molar mass of the atmosphere is  

2

1
N 28.0 g moleM −= ⋅ 2O

2

1
O 32.0 g moleM −= ⋅

 
 ( ) ( )1 1

atm(0.78) 28.0 g mole (0.21) 32.0 g mole 28.6 g moleM− −⋅ + ⋅ = = ⋅ 1− . (12.6.1).  
  
The density ρ  of the atmosphere as a function of molar mass , the volumeV , and 
number of moles  contained in the volume is given by 

atmM

mn
 

 
total

m molarM n M
V V

ρ = = . (12.6.2) 
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How does the pressure of the atmosphere vary a function of height above the surface of 
the earth? In Figure 12.5, the height above sea level in kilometers is plotted against the 
pressure. (Also plotted on the graph as a function of height is the density in kilograms per 
cubic meter.) 
 

 
 

Figure 12.5 Total pressure and density as a function of geometric altitude 
 
Isothermal Ideal Gas Atmosphere 
 
We model the atmosphere as an ideal gas in static equilibrium at constant temperature 

. The pressure at the surface of the earth is . The pressure of 
an ideal gas, using the ideal gas equation of state (Equation 

250 KT = 5
0 1.02 10 PaP = ×

(12.5.14)) can be expressed in 
terms of the pressure , the universal gas constant P R , molar mass of the atmosphere 

, and the temperature T . atmM
 

 
total

m
atm atm

T M RT RTP n R
V V M M

ρ= = = . (12.6.3) 

 
Thus the equation of state for the density of the gas can be expressed as 
 

 atmM P
RT

ρ = . (12.6.4) 

 
We use Newton’s Second Law determine the condition on the forces that are acting on a 
small cylindrical volume of atmosphere (Figure 12.6a) in static equilibrium of cross 
section area A  located between the heights z  and z z+ Δ . 
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Figures 12.6a (left), Mass element of atmosphere, and 
Figure 12.6b (right), Force diagram for the mass element 

 
The mass contained in this element is the product of the density ρ  and the volume 
element , V A zΔ = Δ
 
 m V A zρ ρΔ = Δ = Δ . (12.6.5) 
 
The force due to the pressure on the top of the cylinder points downward and is equal to 

( )ˆ( ) ( )z z P z z A+ Δ = + Δ −F k
G

 where  is the unit vector directed upward. The force due 

to the pressure on the bottom of the cylinder is directed upward and is equal to 
. The pressure on the top 

k̂

k )ˆ( ) ( )z P z A=F
G

(P z z+ Δ  and bottom  of this element are 
not equal but differ by an amount 

( )P z
( ) (P P z z P z)Δ = + Δ − . The force diagram for this 

element is shown in the Figure 12.6b.  
 
Since the atmosphere is in static equilibrium in our model, the sum of the forces on the 
volume element are zero,   

 
 total m= Δ =F a 0

GG G . (12.6.6) 
 
Thus the condition for static equilibrium of forces in the z -direction is 
 
 . (12.6.7) ( ) ( )P z z A P z A m g− + Δ + −Δ = 0
 
The change is pressure is then given by 
 
 PA m gΔ = −Δ . (12.6.8) 
 
Using Equation (12.6.5) for the mass mΔ , substitute into Equation (12.6.8) yielding 
 

 atmM gP A A z g A z P
RT

ρΔ = − Δ = − Δ . (12.6.9) 
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The derivative of the pressure as a function of height is then linearly proportional to the 
pressure, 
 

 atm

0
lim
z

dP P M g P
dz z RTΔ →

Δ
= = −

Δ
. (12.6.10) 

 
This is a separable differential equation; separating the variables, 
 

 atmdP M g dz
P RT

= − . (12.6.11) 

 
Integrate this result to find  

 

 
0

( )
atm atm

0
0

( )ln
P z z

P

dP P z M g M gdz z
P P RT RT

= = − = −∫ ∫ . (12.6.12) 

 
Exponentiate in Equation 0ln( ( ) / )P z P (12.6.12) to find the pressure  in the 
atmosphere as a function of height 

( )P z
z  above the surface of the earth, 

 

 atm
0( ) exp M gP z P z

RT
⎛= −⎜
⎝ ⎠

⎞
⎟ . (12.6.13) 

 
Example: What is the ratio of the pressure at 9.0 kmz =  to the pressure at the surface of 
the earth?  
 

 
( )( )

( ) ( )
3 1 2

3
1 1

0 (250 K)

28.6 10 kg mole 9.8 m s(9.0 km) =exp 9.0 10 m
8.31 J K mole

0.30.

P
P

− − −

− −
−
⎛ ⎞× ⋅ ⋅
⎜ ⎟×
⎜ ⎟⋅ ⋅⎝ ⎠

=

 (12.6.14) 

 
Several assumptions about the atmosphere were introduced in this model.   
 
Uniform Temperature Assumption: 
 
Isothermal atmosphere. The temperature actually varies according to the specific region 
of the atmosphere. A plot of temperature as a function of height is shown in Figure 12.7. 
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Figure 12.7 Temperature-height profile for U.S. Standard Atmosphere 
 

1. Troposphere: the temperature decreases with altitude; the earth is the main heat 
source (absorption of infrared (IR) radiation by trace gases and clouds, and 
convection/conduction). 

 
2. Stratosphere: the temperature increases with altitude; absorption of ultraviolet 

(UV) radiation from the sun by ozone. 
 

3. Mesosphere: the temperature decreases with altitude; the atmosphere and earth 
below the mesosphere are the main source of IR that is absorbed by the ozone. 

 
4. Thermosphere: the sun heats the thermosphere by the absorption of X-rays and 

UV by oxygen. Temperatures range from 500 K to 2000 K depending on solar 
activity. 

 
Uniform Mixing Assumption: 
 
The lower atmosphere is dominated by turbulent mixing which is independent of the 
molecular mass. Near 100 km, both diffusion and turbulent mixing occur. The upper 
atmosphere composition is due to diffusion. So the ratio of mixing of gases changes and 
the mean molar mass decreases as a function of height. Only the lightest gases are present 
at higher levels. The variable components like water vapor and ozone will also affect the 
absorption of solar radiation and IR heat from the earth. The graph of height vs. mean 
molecular weight is shown in Figure 12.8. The number density of individual species and 
the total number density are plotted in Figure 12.9. 
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Figure 12.8 Mean molecular weight   Figure 12.9 Number density of  
as a function of geometric height   individual species and total number 
       as a function of geometric altitude. 
 
 
(Note that in the above axis label and caption for Figure 12.8, the term “molecular 
weight” is used instead of the more appropriate “molecular mass” or “molar mass.”) 
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