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The Ideal Gas
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Common Properties

(A) gas expands to fill its container and its volume is readily 

contracts when pressure is applied.

(b) Two or more gases form homogeneous mixtures in all 

proportions, regardless of how different gases may be. 



Equation of State

• To define properly the state or conditions, of a gas, it is 
necessary to assign values to certain variable quantities –
namely, 

• temperature (T), volume (V), pressure (P) and quantity (n). 

• The state can be specified by giving the values of any 
three of these variables, 

• F(n,V,P,T) = 0 (1.1)



Equation of State

• Here F denotes some relationship between the variables. 

• Particular forms of equations like Eq. (1.1) are called 

equations of state. They can be obtained by;

(1)Fitting experimental n, V, P,T data to empirical     

equations.

• Examples of these empirical equations are the followings:



Equation of State

• Law of Boyle           PV = const. at const. T

• Law of Charles       V/T = const. at const. P

• Law of Amontons    P/T = const. at const. V

• Combined law         PV/T = Const. n

• Principle of Avogadro   V/n = const . at  n and P

(2) Theoretical equations can be derived from models of 

gases such as that proposed by the kinetic theory of 

gases.



The Ideal-Gas Equation of State 

• An ideal gas is defined as a gas that has the following 

equation of state:

PV = nRT (1.2)

• Here R is a universal gas constant. Its units depend on 

that used for P and V, since n and T have usually the units 

models (mol) and degree Kelvin (K). 

Note: R = PV / nT = work / nT = Energy / Mol x Kelvin



The Ideal-Gas Equation of State

A standard condition of temperature and pressure (STP)

• T = 273.15 K 

• P = 101.32 k Pa (1 atm)

Using Eq.1.2 we have that;

• (The volume of one mol) = 0.022415 m3          at STP 

_____________________________________________________________

Exercise

Determine the different values of R using Eq. 1.2. 

V



THE MOLECULAR KINETIC THEORY OF GASES

• The properties of a prefect ideal gas can be rationalized 

qualitatively in terms of a model in which the molecules of 

the gas are in continuous chaotic motion.

• We shall now see how this model can be expressed 

quantitatively in terms of the kinetic theory of gases.



Assumptions of the Theory

• Gases consist of discrete particles called molecules which 

are of a negligible volume in comparison with that of the 

container. 

• The molecules are in continuous random (caotic, 

Brownian) motion independent of each other (do not repel 

or attract each other) and travel only in straight lines 

between brief perfectly elastic collisions (no change in 

kinetic energy).



Assumptions of the Theory

• The pressure of the gas is due to the collisions of 

molecules. 

• The kinetic energy due to the transitional motion of a mol 

of gas molecules is equal to (3/2) RT.



Pressure of the Gas

• Consider N molecules of an ideal gas,             

in a cubic container of side L (m).

• A typical molecule has mass m (kg), and

velocity u (ux, uy, uz) (ms-1)



Pressure of the Gas

Click Here to see flash file Click Here to see flash file



We can calculate the gas pressure as follows

1.The pressure (P) is defined as the force (F) per unit area (A), viz. 

(1.3)     

2.The force exerted by gas molecule is defined as the rate of change of 

momentum, that is

(1.4)
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We can calculate the gas pressure as follows

3. For one molecule in x direction, the momentum is mux, 
and change of momentum per collision = mux – (-mux) 

= 2 mux         (1.5)

4. Rate of change of momentum per molecule 

per collision= change of momentum x number of collisions    
per second



We can calculate the gas pressure as follows:

•The number of collisions per second (1.6)

From Eqs. (1.1) – (1.5) we can find that the pressure on the wall A as 

(1.7)

where V = L3 is the volume of the container. 

•Now we can recognize that the pressure is the same for all walls of the 

container. Thus we can discard the restriction “by side A”. We therefore 

have

(1.8)                         
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We can calculate the gas pressure as follows

•Now consider N molecules, instead of just one, the net pressure 

becomes as    

V
muNP avx )( 2

= (1.8)



We can calculate the gas pressure as follows

If            is written to indicate an average value, we have 

A relation between the pressure and the speeds of the 

molecules, rather than a component of the speeds, is more 

convenient. 

•The velocity vector can be resolved into three orthogonal 

components to give
2222
zyx uuuu ++=

(2.9)

(2.10)
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We can calculate the gas pressure as follows

•For a large number of molecules moving in random directions

(1.10)

Substitution of Eq. (1.10) in Eq. (1.9) gives the desired relation between P 

and V
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We can calculate the gas pressure as follows

• This important equation is as far as one can go to explain 

the basis for the pressure of a gas from the four kinetic-

molecular postulates set out earlier.

• An additional postulate must be added to reach a result 

that can be compared with the empirical ideal-gas laws. 



Example 1.1

1 mol of O2 molecules is confined in a container and struck each of its 
walls each second. Calculate 

(a) the total force that the molecules exert on the wall if their speed is 
500 ms-1?and

(b) the pressure of the gas if the area of each wall is 20 cm2 and 

(c) urms (root mean square speed) .

___________________________________________________

Solution

(a) According to Eq. (1.3) and (1.4) the force exerted by one molecule is 

related to the rate of change of momentum. In 1s, the force exerted by N 

molecule is  

s
muN

dt
muNF
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Example 1.1
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Example 1.3

Calculate the transnational kinetic energy Ek of 1 mol of gas molecules 
and ∈k for 1 molecule at 25oC.
__________________________________________________________

Using in Eq.(1.11) and that N = nNA, Ek = ½ mu-2, and PV = nRT,

we have 

Ek = 3/2 RT (1.12)

Ek = 3/2(8.314 JK-1 mol-1) (298 K) = 3.718 kJ mol-1
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Example 1.3

For 1 molecule

(1.13)

where k is the Boltzmann constant

∈k =3/2(1.3806x10-23 JK-1)(298 K) = 6.174x10-23 J

ktR
N
R

A
k 2

3
2
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Quiz 1
1.1 What do you understand by the terms?

(a) Chaotic motion                    (b) Elastic collision

(c) Ideal gas                              (d) Empirical Formula

1.2 State the following laws in words;

(a) T – V law,                           (b) T – P  law,   

(c) P – V law,                           (d)    PVT law and

(e) P – n    Principle.

1.3 What model of a gas was proposed by the kinetic    

theory of gases.



Quiz 1

1.4 How are the following related?

(a) Torr and atm,                       (b) Pascal and atm,

(c) Force and pressure,             (d) Pascal and joule,

(e) Gas const. and work ,and     (f) Kinetic energy and

temperature.

1.5 Explain in terms of the kinetic theory of gases;

(a)Why two, given the freedom to mix, will always mix    

entirely?



(b) How heating makes a gas expand at constant

pressure?.

(c) How heating a confined gas makes its pressure 

increase?        
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Equations of Real Gases

Contents:

• Compressibility Factor.

• Virial Equations

• Van der Waals Equations.

• Other Types of Equations.



Compressibility Factor  also known as compression 
factor)

(2.1)

The curve for each

gas becomes more

ideal as T



Example 2.1

The density (ρ) of steam of 100.0oC and 1.01325 bar is 0.5974 kg m-3.

Calculate:

i. the compressibility factor.

ii. the deviation of the volume from the ideal behaviour

Solution

i- Submitting n = m/M and ρ = m/v into (2.1)

(m = mass of the gas)

(2.2)
RT

PM
mRT
PMV

nRT
PVZ

ρ
===



Example 2.1

RT
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nRT
PVZ

ρ
==ii-

9848.0
)15.373)(314.8)(m 5975.0(
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Example 2.1

V Z
P

RT
⎟
⎠
⎞

⎜
⎝
⎛real = 

Ideal Z = 30618x0.9848 = 30152.6 LVV
real = 

%52.1100
30618

301526 - 30618
=xDeviation = 

(ii) The ideal molar volume  RT/P = 0.030618 m3 = 30618 m.
The real molar volume from Eq. (1.3) is 

=
− 100x

V
VV

ideal

realideal

So this gas shows 1.52% deviation from ideal 
behaviour under these conditions.



Equations of Real Gases

Many equations of state have been proposed for real gases 

(table 2.1), derived from different theoretical models or 

based on different ideas about how to fit experimental 

PVT data on an empirical equation.



Table 2.1 Some Two-Parameter Equations Suggested

to Describe the PVT Behavior of Gases.
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Virial Equations

Real gases have non-zero volume at low T and high P

have repulsive and attractive forces between molecules

short range,                                               

important at high P

At low pressure, molecular volume and intermolecular forces 

can often be neglected, i.e. properties ideal.

longer range,
important at moderate P



Virial Equations

Virial Equations

(2.5)

(2.6)

RT is the first virial equation

B is the second virial coefficient.

C is the third virial coefficients.

They are temperature dependent.
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Virial Equations

The equations have the form that makes it suitable base     

for the description of the PVT behavior of real gases.

The coefficients of the virial expression with pressure 

terms are related to those of the virial equation with 

volume terms.

1/V = BRT     and        V = B'RT                           (2.7)



Example 2.2

Calculate the molar volumes of CH4 at  200oC and 400 

bars according to the virial equations. What is the 

deviation from the ideal behavior?  The virial coefficient B 

of CH4 at 200oC is -0.417 L mol-1.

Solution 

(i)
bar 400

K) 473)(Kbar  10314.8( 1-12 −−

==
molLx

P
RTV ideal

= 9.83 x 10-2 L mol-1



Example 2.2

(ii) From Eq. (2.5) we have that

9965.0
)573)(Kbar  108314(

bar) 400)(mol L 417.0(1

11
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=
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+=
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−− KmolLx

RT
BPBVZ

c) Deviation = 

(9.83x10-2 mol-1)(0.9965)

=9.79 x 10-2 L mol-1
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Van der Walls Equations

van der Waals attributed the failure of the PV = nRT to

• the volume occupied by the gas molecules and

• the attractive forces between the molecules.



Excluded Volume

• Instead of treating gas molecules as mass

points, van der Waals treated them as 

rigid spheres of diameter d. 

• The nearest approach of the center of one 

molecule to the center of another molecule of the same species is 
also d. 

• Thus for each pair of molecules a volume of 4/3 πd3 is excluded.

We thus obtain

d

d



Excluded Volume

Thus we obtain that

Excluded volume per a  molecule = Vexc

Vexc= ½ (4/3 πd3) = 4[1/8(4/3 πd3)] = 4[4/3 π(d/2)3]

The expression in brackets is the volume of a molecule. 

Vexc= 4 times the actual volume of a molecule

Excluded volume for NA molecules = 4 times the actual volume of    NA

molecules



Excluded Volume

If the total excluded volume for NA molecules (Avogadro’s 
number) is b, then 

(2.8)

where  b  is a constant for given species of a gas.

Vreal = Videal - nb

This correction modifies the ideal-gas equation to  

P(V-nb) = nRT
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⎥
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Molecular Attraction

Van der Waals made the correction for attractive forces as follows. 

• Attraction occurs between pairs of molecules,

• Molecular attraction decreases the number of collisions on the walls of 

the container ( n/V )

• Attraction forces increases as the number of molecules increases in 

the container (n/V ) 

• Attraction forces  should proportional with 

the  square of the concentration of molecules, (n/v)2.

• Attractive forces  = a(n/V)2



Molecular Attraction

The real pressure P will be less than the ideal-gas pressure 

by an amount a(n/v)2, where a is a different constant per 

each gas. 

or Preal = Pideal – a(n/V)2

The result of both the van der Waals corrections is, therefore



Molecular Attraction
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The van der Waals Eqs. (2.10 and 2.11) represents the PVT 
behavior of gases quite well when they deviate moderately 
from ideality. 

RTbV
V
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If n = 1, we have that
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Example 2.3
Calculate the pressure needed to confine 1 mol of carbon 

dioxide gas to a volume of 0.5 L at 298 K using van der 

Waals equation. Estimate the radius of CO2 molecule.

a = 3.592 L2 atm mol-2 and b = 0.0427 L mol-1.

__________________________________________________

Pressure of CO2

2

2

V
an

nbV
nRTP −
−

=

Since V =0.5 L and T = 298 K, then R = 0.082 L atm K-1 .mol-1

21-

-22
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Example 2.3

Preal = 48.87 atm – 7.18 atm = 41.69 atm. 

Pideal = nRT / V = 1 x 0.082  x 298 / 0.5 = 48.87 atm
The pressure is appreciably less 7 atm than that would be needed if carbon 

dioxide  behaved ideally. 

Radius of CO2

=5.64x10-30 m3

r  = 2.15 x 10-10 m
The pressure is appreciably less than the 100 bar that would be needed if methane 

behaved ideally. 
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Condensation of Gases



The constants of van der Waals equation can 
be   evaluated from critical-point data.

• Tc is the critical temperature which is defined as the 
highest temperature at which liquid and vapor can 
exist together (condensation of the gas is possible) .

• Pc is the pressure at which condensation of vapor to 
liquid occurs when the temperature is equal to Tc or 
the highest pressure at which liquid will boil when 
heated.

• Vc is the  volume of a mol of the substance at Tc and 
Pc



The constants of van der Waals equation can 
be   evaluated from critical-point data.

Tc, Pc and Vc are the critical constants of the gas.

Above the critical temperature the gas and liquid 

phases are continuous, i.e. there is no interface.

Van der Waals equation, or any of the other two-

parameter equations of Table 2.1, cannot describe 

the detained PV behavior of a gas in the region of 

liquid-vapor equilibrium.



The constants of van der Waals equation can 
be   evaluated from critical-point data.

• The constants of van der waals equation can be evaluated from critical 
point data. The van der Waals Equation is not  exact, only a model.

Applying  equation (2.13) to the point of inflction at the critical point, we  

have that

(2.13)

(2.14)

and

(2.15)
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The constants of van der Waals equation can 
be   evaluated from critical-point data.

• These three equations can be solved for a, b, and R in 

terms of PC, VC, and TC. to obtain that 

(2.15)

• The last of these equations can be rearranged to get the 

compressibility factor at the critical point,

(2.16) 

C

CC2
CCC T3
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The constants of van der Waals equation 
can be   evaluated from critical-point data.

The values of a and b are often chosen so that the van der 

Waals PV isotherm with a horizontal point of inflection 

occurs at PC and TC.

This procedure can be followed by eliminating the VC term, 

by using VC = 3b, from the other expression of Eq. (2.15). 

The resulting expressions for a and b are

(2.17)C

CC

P
RTbandTa
8P 64

R 27

C

22

==



The constants of van der Waals equation 
can be   evaluated from critical-point data.

Gas

H2 0.33

He 0.32

CH4 0.29

NH3 0.24

N2 0.29

O2 0.29

C

CC

RT
VP



Example 2.5

Evaluate the van der Waals constants for O2 using 

TC = -118.40C and PC = 50.1 atm. 

________________________________________________

Using Eq. (2.17) gives that

2-2
221-122
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Van der Waals Equation and The 
Principle of Corresponding States

Analysis of the critical point data indicated that

The compressibility factor has nearly the same value for all 

gases at the critical point. 

At the critical point, all gases are equally non-ideal. 

It will be convenient to introduce variables that relate P, V and T 

to the value of these variables at the critical point.

To do this define the ratio of P, V and T to the critical values PC, 

VC and TC, respectively, as the reduced variables

PR = P/PC VR = V/VC TR = T/TC-



Van der Waals Equation and The 
Principle of Corresponding States

J.H. Van der Waals pointed out 

that, to fairly good approximation 

at moderate pressures, all gases 

follow the same equation of state 

in terms of reduced variables. 

He called this rule the principle 
of corresponding states. 

This behavior is illustrated for a 

number of different gases. 



Introducing the reduced variables PR, VR, and TR into the 

van der Waals Eq gives that 

(2.18) 

In this form, van der Waals equation requires no 

quantities that characterize a particular gas – other than 

the critical-point data implicit in the reduced variables. 

Thus van der Waals equation is consistent with the law of 

corresponding states. 
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Quiz 2
2.1. Why gases deviate from the ideal behavior ?

2.2. At what conditions gases can follow the ideal gas equation?

2.3. Define the terms;

(i) compressibility factor,   (ii) excluded volume,      

(iii) critical point and           (iv)reduced variables.

2.4. Why the compressibility factor is important?

2.5. Give examples of real gas equations.

2.6. Show how van der Waals corrects the ideal gas equation for 

real gases.
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Distribution of Velocities of Gas Molecules in One 
Direction (Boltzmann Distribution)

According to the model on which the 

kinetic-molecular theory is based, the 

molecules of a gas are moving with a 

variety of speeds and directions, i.e., 

with various velocities.



Distribution of Velocities of Gas Molecules in 
One Direction (Boltzmann Distribution)

Since gases behave similarly in all directions,

- We will investigate the distribution along a particular direction, say 

the x direction.

We assume that we have a sample of  a gas of:

N total number of molecules .

dN probable number of molecules of velocities in the x direction 

between  Ux and Ux + dUx

dN/N fraction of molecules of velocities between Ux and Ux + dUx or 

the probability of finding molecules between the two planes.



Distribution of Velocities of Gas Molecules 
in One Direction (Boltzmann Distribution)

This is also the 
probability of 
finding 
molecules with 
velocity 
components 
between two 
planes 



Distribution of Velocities of Gas Molecules 
in One Direction (Boltzmann Distribution)

The probability is expressed also as  f(ux) dux component .

For each molecule ε = ½ mUx
2

According to the Boltzmann distribution expression,

This constant can be evaluated by recognizing that integration of the      
right side of Eq. (3.1) over all possible values of ux, that is, from ux = -∞ to    
ux = +∞, must account for all the velocity points. Thus we can write

x
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N
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N
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/)2/1( 2 kTmu xeA (3.2)



Gas Molecules Simulation

so that the proportionality constant A is given by 

(3.3)

The value of the integral is seen from the table of integrals  
to be ,                and we obtain

(3.4)

xkTmu
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e
A

x∫
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Gas Molecules Simulation
Finally, the equation for the distribution over the velocities 

along the x direction for a sample of N molecules can be written

as

(3.5)

•Note that f(ux) is a velocity probability density so that the 

probability of finding a molecule with velocity components 

between ux and ux+ dux is given by f(ux)dux.

•Graphs of this one-dimensional distribution function can be 

obtained
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Gas Molecules Simulation

Probability density f(Ux) for the velocity of oxygen 
molecules in an arbitrarily chosen direction at 100, 300, 
500, and 1000 K. 



Example 3.1

Calculate the probability density for ux of N2 molecules at 300 K. 

__________________________________________________

Using equation (3.5)

= 8.065 x 10-4 s m-1      
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Exercise
Calculate the probability density of 
N2 at 0 and 600 K.



Maxwell – Boltzmann Distribution
(in three dimensions)

The speed u of a molecule is related its component velocities by

(3.6)

Therefore, F(u) du is the probability of finding a molecule with a speed 

between u and u + du .

The one-dimensional distribution can be combined to give the fraction of

the molecules that have velocity components between ux and ux+dux, ux

and u y+ duy and uz and uz + duz.  

2
z

2
y

2
x

2 uuuu ++=



Maxwell – Boltzmann Distribution
(in three dimensions)

It is given analytically ; 

f(ux, uy, uz) duxduy,duz =

(3.7)

The probability of finding a molecule with velocity 

components between u and u+ du is given by

(3.8)
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Maxwell – Boltzmann Distribution
(in three dimensions)

The probability density F(u) is

F(u) = 4πu2 (3.9)

The probability density at a speed of 0 is zero.

The probability density increases with the speed up to a

maximum and then declines.
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Maxwell – Boltzmann Distribution
(in three dimensions)



Example 3.2

A flask contains of N2 molecules at 100 K. How many molecules have a 

velocity in the range 500.0-500.1 ms-1?  

Suppose that we have a sample of 1 mol of N2
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Example 3.2

The number of molecules have velocities in the range 500.0-500.1 ms-1  

dN = (5.79x10-4)(6.022x1023)(0.1) = 3x1019 molecules

and the percent of them is given as follows:

%1098.4100
1002.6

103100 3
23

19
−== xx

x
xx

N
dN Exercise

How much is the % of 
O2 molecules have 
velocities in the range 
between 300 – 300.1 
ms-1?
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Speeds of Gas Molecules

The speed of gas molecules is of three types

• Most Probable Speed (up )

• Mean (average)  Speed (ū)

• Root mean-square Speed (urms).



Speeds of Gas Molecules

It is the speed at the maximum of F(u). Differentiating Eq. 3.9 

and setting dF/du equal to zero, we find

(4.1)
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Speeds of Gas Molecules

It is calculated as the average of (u) using the probability distribution F(u):

∫
∞

=
0

)( duuuFu

Mean speed ( ): 

Substituting Eq.(3.9) and performing the integral with the 
help of tables, we find

(4.2)
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Speeds of Gas Molecules

Which is defined as the square root of  

Substituting Eq. 3.9 and using tables again, we find

(4.3)
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Speeds of Gas Molecules

We can see that at any temperature 
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Molecular Collision



Speeds of Gas Molecules

Each of these speeds is proportional to (T/M)1/2 .

Each increases with temperature

Each decreases with molar mass. Lighter molecules therefore 

move faster than heavier molecules on average, as shown in 

the following table.



Speeds of Gas Molecules

Various types of average speeds of gas molecules 

up/m s-1(u)/m s-1(u2)1/2/m s-1Gas

156817691920H2

394444482O2

336379411CO2

556627681CH4



Example 4.1

Calculate the The different types of speeds of hydrogen molecules at 

0°C. 

_________________________________________________________

2/1

1-3

112/1

)mol 10016.2(
)273)(314.8)(2(2
⎥
⎦

⎤
⎢
⎣

⎡
=⎟

⎠
⎞

⎜
⎝
⎛= −

−−

kgx
kmolJk

M
RTu p

2/1

1-3

112/1

mol 10016.2)(146.3(
)273)(314.8)(8(8
⎥
⎦

⎤
⎢
⎣

⎡
=⎟

⎠
⎞

⎜
⎝
⎛= −

−−

kgx
kmolJk

M
RTu
π

= 1.50 x 103 m s-1

= 1.69 x 103 m s-1



Example 4.1
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The root-mean square speed of a hydrogen molecule at 0°C 
is 6620 kmh-1, but at ordinary pressures it travels only an 
exceedingly short distance before colliding with another 
molecule and changing direction.

= 1.84 x 103 m s-1

Exercise
How many molecules 
have a velocity exactly 
equal to 500 ms-1? 

Exercise
How many molecules 
have a velocity exactly 
equal to 500 ms-1? 
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Molecular Collision

COLLISION PROPERTIES 

OF GAS MOLECULES



Molecular Collision

Two Gases

Mean Free PathOne Gas

COLLISION



Molecular Collision

Collision           
Density

Two gasesZ12 One gas  Z11

Collision 
Frequency

Two gases Z1(2) One gas  Z1(1)



Molecular Collision
Collision Frequency:

The collision frequency is the number of collisions of    
molecules per unit time, where

ZA(B) for the collision between the molecules of two different     
gases A and B.

ZA(A) for collision between identical molecules.
let us consider a cylinder of length l (m) containing NA and NB

molecules of gas A and gas B, respectively. These molecules 
have;

Diameters dA and dB (m) and collision diamete

dAB = (dA + dB)/2                                             (5.1)
Atomic masses mA and mB (kg), molecular masses MA and MB 

(kg) and reduced mass .



µ =               =                = NA (5.2) 

Densities ρA and ρB (m-3), number of molecules per unit 

volume or ρ = N/V

Velocities uA and uB (ms-1) and mean relative velocity

(5.3)
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Molecular Collision

Click
here to 

see
Flash 

file

hard spherical molecules collide with each other if their    
centers come within a distance

dAB = ½ (dA+dB),     the collision diameter.



Collision of different molecules

AAB ud 2π

Molecules of type B are stationary.

A molecule of type A will collide in unit time with all    

molecules of type B that have their centers in a cylinder of

Volume =

A molecule of type A would undergo a 

number of collisions =  

per unit time.

BAABud ρπ 2



Molecules of type B are actually not stationary and so the 

relative speed uAB should be used in calculating the rate 

of collisions zA(B) of a molecule of type A with molecules of 

type B. Thus, 

ZA(B) =                                        (5.4)

or                                                         (5.5) 

• where zA(B) is the collision frequency of molecules of 

type A with molecules of type B . 

BABABud ρπ 2
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Molecular Collision

• The collision diameter dAB has the unit m, 

• The relative mean speed (uAB) has the unit m s-1, 

• The collision frequency has the unit s-1.



Collision Frequency of Identical Molecules

Now  a molecule of type A is moving through molecules of 

type A, rather than molecules of type B, Eq. (5.4) 

becomes

(5.6)

Or                                                          (5.7)
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Collision Frequency of Identical Molecules

The Pythagorean theorem 

can be used to interpret the 

mean relative speed in terms 

of the mean speeds of 

molecules A. 

They can collide with each 

other with any angle 

between 0o and 180o

between their paths, but Eq. 

(5.7) shows that the average 

collision is at 90o. 

uABuA

uB



Molecular Collision

The mean relative speed:
2/1
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Molecular Collision

In case of one type of molecules

u 2u2u 112 ==

2
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Molecular Collision

The collision frequency z1(1) is thus , 

*  The rate of collisions of a molecule of a gas with molecules
of the same gas.

*  The number of collision of one molecule of a gas with 
molecules    of the same gas per unit time per unit volume



Example 3.1

What is the mean relative speed of H2 molecules with respect

to O2molecules (or oxygen molecules with respect to hydrogen

molecules) at 298 ?



Example 3.1

The molecular masses are:
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Example 3.1

Note that the mean relative speed is closer to the mean speed 

of molecular hydrogen (1920 ms-1) than to that of molecular 

oxygen (482 ms-1) .



Collision Density

It is the number of collisions per unit tim per unit volume.

For two gases:

To calculate the number of collisions of molecules of type 1 

with molecules of type 2 per unit time per unit volume of gas 

z12 = z1(2)_x ρ1 

z12 = ρ1ρ2π d21212



Collision Density

z11/mol L-1s-1 z1(1)/s-1

10-6 bar 1 bar 10-6 bar 1 bar Gas

2.85x10-4 2.8x10
8

14.13x10
3

14.13x10
9

H2

1.26x10-4 1.26x1
08

6.24x103 6.24x109 O2

1.58x10-4 1.58x1
08

8.81x103 8.81x109 CO2

2.08x104 2.08x1
08

11.60x10
3

11.69x10
9

CH4



For one gas only :

The number of collisions of molecules of type 1 with other 
molecules of type 1 per unit time per unit volume of gas will be
reduced to 

z11 = ½ ρ2πd2ū 11           
1/2 = 2-1/2   = 1/ √2

or                 z11 = 2-1/2 ρ2πd2 ū



For one gas only :

where a divisor of 2 has been introduced so that each collision
is not counted twice and 11 has been placed by 21/2 by means
of the reduced mass of like particles.The collision density is
readily expressed in mol m-3s-1 by simply dividing by the
Avogadro constant. 



For one gas only :

where a divisor of 2 has been introduced so that each 

collision is not counted twice and 11 has been replaced by 

21/2 by means of the reduced mass of like particles. The 

collision density is readily expressed in mol m-3 s-1 by simply 

dividing by the Avogadro constant. 



For one gas only :

The collision density is on interest because it sets an upper limit 

on the rate with which two gas molecules can react. Actual 

chemical reaction rates are usually much smaller than the 

collision rates, indicating that not every collision leads to 

reaction. 



For one gas only :

Collision frequencies z1(1) and collision densities z11 for four 

gases are given in Table 3.1 at 25oC. The collision densities 

are expressed in mol L-1 s-1 because it is easier to think about 

chemical reactions in these units.



Example 3.2

For molecular oxygen at 25o+C, calculate the collision 

frequency z1(1) and the collision density z11 at a pressure of 1 

bar. The collision diameter of oxygen is 0.361 nm or 3.61x10-

10m.
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Example 3.2

The collision frequency is given by 

Z1(1)=√2 ρπd2ū

=(1.414)(2.43x1025m-3)π(3.610m)2(444ms-1)

=  6.24 x 109 s-1

Z1(1)=1.26x108 mol L-1 s-1



Mean Free Path

• The mean free path λ is the average distance traveled 
between collisions.

• It can be computed by dividing the average distance traveled 

per unit time by the collision frequency. 

• For a molecule moving through like molecules. 

22/1)1(1 d2
1

z
u

ρπ
==λ



Mean Free Path

Assuming that the collision diameter d is independent to

temperature, 

the temperature and pressure dependence of the mean free

path may be obtained by substituting the ideal gas law in the

form    ρ = P/kT:

22/1 d2
1
π

=λ

Thus, at constant temperature, the mean free path is inversely 
proportional to the pressure. 



Mean Free Path

The collision density is given by 

ud
2

1z 22
2/111 πρ=

)s m 444()m10x61.3()m10x43.2)(707.0( -12102325 −− π=

123

1331334
1334
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−−−−
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Z11= 1.26x108 mol L-1 s-1



Example 3.3

For oxygen at 25oC the collision diameter is 0.361 nm. 

What is the mean free path at (a) bar pressure, and (b) 0.1 

Pa pressure?

(a) Since from example 3.2, ρ = 2.43x1025 m-3

221 d2
1
ρπ

=λ /

m10x11.7])m10x61.3()m10x43.2)(414.1[( 81210325 −−−− =π=λ



Example 3.3

(b)

= 0.071 m = 7.1 cm

At pressure so low that the mean free path becomes 

comparable with the dimensions of the containing vessel, 

the flow properties of the gas become markedly different 

from those at higher pressures.

319
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TRANSPORT PHENOMENA IN GASES

Transport
Properties

Diffusion Thermal 
Conduction Viscosity



TRANSPORT PHENOMENA IN GASES

If a gas is not uniform with respect to
• Composition
• temperature, and 
• velocity,
transport processes occur until the gas becomes uniform.
Examples:

(1) Open a bottle of perfume at the front of a classroom:
Good smell moves from front row to rear ( Diffusion).

(2) Metal bar, one end hot and one end cold:
Heat flows from hot to cold end until temperature
becomes (Thermal Conduction)



TRANSORT PROPERTIES

DIFFUSION
Transport of (labelled)
particles

THERMAL CONDUCTION
Transport of thermal 
energy

VISCOSITY
Transport of momentum  in
one direction through a gas
in another direction

TRANSPORT

PROPERTIES

OF GASES



TRANSPORT PHENOMENA IN GASES

In each case,

Rate of flow  ∞ Rate of change of some property with 

distance, a so-called gradient

All have same mathematical form:

Flow of____(per unit area, unit time) = (___x gradient___)



Diffusion: Fick’s Law

dt
dn

A
J N

1
=

(matter)      (diffusion coefficient)   (concentration)

Jiz -D

The flux of component i in the z direction due to diffusion is 
proportional to the concentration gradient dci/dz, according to 
Fick’s law:

(6.1)

dz
dc i

dz
dcDJ i

iz −=



Diffusion: Fick’s Law

Jiz is the flux and

*Expressed in terms of quantity per unit area per unit  time. 

* Jiz has the units mol m-2 s-1, 

* dci/dz has the units of mol m-4, and                   

* D has units of m2 s-1. 



Diffusion: Fick’s Law

* The negative sign comes from the fact that if Ci increases in 

the positive z direction dCi /dz is positive, but the flux is in the 

negative z direction because the flow is in the direction of  

lower concentrations 



Determination of D for the diffusion of one gas into 
another

• The sliding partition is withdrawn for a 

definite interval  of time.                                     

• From the average composition of one 

chamber or the other, After a time 

interval, D may be calculated.

Light          
gas

Sliding
partition

Heavy



Thermal Conduction: Fourier’s Law

Transport of heat is due to a gradient in temperature.

(heat)       ( thermal conductivity)       ( temperature)

qz 

(6.2)

dz
dTKq Tz −=∴

= - KT dz
dT

K is the thermal conductivity.
qz has the units of J m-2 s-1 and
dT/dz has the units of K m-1, 
KT has the units of J m-1 s-1 K-1. 
The negative sign indicates that if dT/dz is positive, the flow       

of heat is in the negative z direction, which is the direction 
toward lower temperature.



Thermal Conduction: Fourier’s Law

Viscosity: is a measure of the resistance that a fluid offers to 

an applied shearing force. 

• Consider what happens to the fluid between parallel 

planes

• when the top plane is moved in the y direction at a 

constant speed relative to the bottom plane while 

maintaining a constant distance between the planes 

(coordinate z)



Thermal Conduction: Fourier’s Law

• The planes are considered to be very large, so that  edge 

effects may be ignored.

• The layer of fluid immediately adjacent to the moving plane 

moves with the velocity of this plane. 

• The layer next to the stationary plane is stationary; in 

between the velocity usually changes linearly with distance,.



Thermal Conduction: Fourier’s Law

The velocity gradient

Rate of change of velocity with 
respect to distance measured 
perpendicular to the direction of flow 
is represented by

duy/ dz

The viscosity η is defined by the 
equation

(6.3)dz
du

F yη−=



Thermal Conduction: Fourier’s Law

• F is the force per unit area required to move one plane 

relative to the other.

• The negative sign comes from the fact that if F is in the +y 

direction, the velocity uy decreases in successive layers away

from the moving plane and duy/dz is negative.



Thermal Conduction: Fourier’s 
Law

•The thermal conductivity is determined 

by the hot wire method

• Determination of the rate of flow   

through a tube, the torque on a disk that 

is rotated in the fluid, or other 

experimental arrangement. 

• The outer cylinder is rotated at a 

constant velocity by an electric motor.



Thermal Conduction: Fourier’s Law

• Since 1N = 1 kg m s-2, 1 Pa s = 1 kg m-1 s-1. A fluid has a 

viscosity of 1 Pa s if a force of 1 N is required to move a 

plane of 1 m2 at a velocity of 1 m s-1 with respect to a plane

surface a meter away and parallel with it.

• The cgs unit of viscosity is the poise, that is, 1 gs-1cm-1

0.1 Pa S = 1 poise.



Calculation of Transport Coefficients

To calculate the transport coefficients 

D, KT, and η

even for hard-sphere molecules, needs  to consider how 

the Maxwell-Boltzmann distribution is disturbed by a 

gradient of concentration, temperature or velocity. 



Diffusion Coefficient

Planes constructed at 
distance ±λ (the mean free 
path) from the origin. The 
concentration gradient is in 
the z direction. 

Where ρo is the number density of particles in the plane at z = 0. 

The density of particles at z = +λ is given by the term in brackets



Diffusion Coefficient

• Consider the diffusion of molecules in a concentration 
gradient in the z direction and we are at  z = 0.

• Imagine that we construct planes parallel to the xy 
plane at x = ±λ, where λ is the mean free path.

• We choose planes at the mean free path because 
molecules form more distant points will, on average, 
have suffered collisions before reaching z = 0. 



Diffusion Coefficient

• Calculate the flux of particles across z = 0 due to 

the molecules above (z>0) and below (z<0). The flux 

across z = 0 from above is
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Diffusion Coefficient

Similarly, the flux across z = 0 due to the molecules below z = 
0 is 

The net flux of particles across the plane z = 0 is then

This equation can be compared with Eq. 5.1 to obtain
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Diffusion Coefficient

• where the subscript 'a' indicates approximate value.

• The exact theoretical expression for  the diffusion coefficient

of hard spheres is:
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Example 6.1

Predict D(O2,N2) of an equimolar mixture of O2 and N2 gases 
at 1.00 atm and 00C using dO2 = 0.353 nm and dN2 = 0.373 
nm.
____________________________________________________________________________________________________________________________________
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Example 6.1

A similar simplified model for thermal conductivity of hard 

spheres yield the approximate value

The exact expression for hard sphere is:
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Example 6.2

Calculate the thermal conductivity coefficient for water vapor at 25oC 

assuming d = 0.50 nm and 

Cv = 25.26 JK-1 mol-1.

___________________________________________________________
Substituting data into Eq. (4.11) gives
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Example 6.2
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Finally, the approximate model for the viscosity of hard spheres
yields:

whereas the exact expression for hard spheres is 
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Example 2

Note that this does not imply that real molecules are hard 

spheres; in fact, we are forcing a model on the 

experiment. Nevertheless, the results in Table 6.1 show 

that a consistent set of molecular diameters result from 

this analysis of the data.



Example 6.3

Calculate the viscosity of molecular oxygen at 273.2K and 1 
bar. The molecular diameter is 0.360 nm.

Using the exact equation for hard spheres, we find:
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Example 3
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= 1.926 x 10-5 kg m-1 s-1


