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Isothermal process on p-V, T-V, and p-T diagrams 

isothermal  ⇒  T = T0 = constant 
a = (p1, V1, T0)       b = (p2, V2, T0) 

pV = nRT0 

p(V) = V 
nRT0 T(V) = T0 p(T) = multivalued 

a 

T 

V2 V1 

T0 
b 

V 
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p1 

p2 

V2 V1 
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T0 

W 
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Isochoric process on p-V, T-V, and p-T diagrams 

p(T) = V0 

nRT p(V) = multivalued T(V) = multivalued 

isochoric  ⇒  V = V0 = constant 
a = (p1, V0, T1)       b = (p2, V0, T2) 

pV0 = nRT 

a 

p 

V0 V 

b 

p1 

p2 

a 

T 

V0 V 

b 

T1 

T2 b 

p 

T1 T2 
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T 

p1 

p2 
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Isobaric process on p-V, T-V, and p-T diagrams 

isobaric  ⇒  p = p0 = constant 
a = (p0, V1, T1)       b = (p0, V2, T2) 

p0V = nRT 

p(V) = p0 p(T) = p0 T(V) = nR 
p0V 

a 

p 

V2 V1 

b 

V 

p0 

W 

Q 

a 

T 

V2 V1 

b 

V 

T2 

T1 

a 

p 

T2 T1 

b 

T 

p0 
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Clicker question 1 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

c 

a 

p (Nm–2) 

105 

Vc 1 

T0 

V (m3) 

b 

pc 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  If T0 ~ 240K (and thus RT0 = 2,000 J mol–1), how many moles of
 gas, n, are in the system? 

a)  5 
b)  105  

c)  50 
d)  1,000 
e)  Not enough information to tell 

isotherm 

isobar 

isochor 
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Clicker question 1 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

c 

a 

p (Nm–2) 

105 

Vc 1 

T0 

V (m3) 

b 

pc 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  If T0 ~ 240K (and thus RT0 = 2,000 J mol–1), how many moles of
 gas, n, are in the system? 

a)  5 
b)  105  

c)  50 
d)  1,000 
e)  Not enough information to tell 

n  =          =                 =  50 
pV 
RT0 

100,000 

2,000 

isotherm 

isobar 

isochor 
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Clicker question 2 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is Vc, the volume at state c? 

a)  0.5 m3 

b)  2.0 m3 
c)  4.0 m3  
d)  8.0 m3  
e)  Not enough information to tell 

c 

a 

p (Nm–2) 

105 

Vc 1 

T0 

V (m3) 

b 

pc 



PHYS 1101, Winter 2009, Prof. Clarke 7 

Clicker question 2 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is Vc, the volume at state c? 

a)  0.5 m3 

b)  2.0 m3 
c)  4.0 m3  
d)  8.0 m3  
e)  Not enough information to tell 

c 

a 

p (Nm–2) 

105 

Vc 1 

T0 

V (m3) 

b 

pc 

need to know pc 
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Clicker question 3 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is Vc, the volume at state c? 

a)  0.5 m3 

b)  2.0 m3 
c)  4.0 m3  
d)  8.0 m3  
e)  Not enough information to tell 

c 

a 

p (Nm–2) 

105 

Vc 1 

T0 

V (m3) 

b 

5 ×104 
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Clicker question 3 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is Vc, the volume at state c? 

a)  0.5 m3 

b)  2.0 m3 
c)  4.0 m3  
d)  8.0 m3  
e)  Not enough information to tell 

c 

a 

p (Nm–2) 

105 

Vc 1 

T0 

V (m3) 

b 

5 ×104 

pcVc = paVa  ⇒  Vc =      Va = 2 m3 pa 
pc 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 
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Clicker question 4 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is the net change in internal energy, ΔEint? 

a)  0 J 

b)  5.0 ×104 J 
c)  about 7.0 ×104 J 
d)  105 J  
e)  Not enough information to tell 

c 

a 

p (Nm–2) 

105 

2 1 

T0 

V (m3) 

b 

5 ×104 
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Clicker question 4 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is the net change in internal energy, ΔEint? 

c 

a 

p (Nm–2) 

105 

1 

T0 

V (m3) 

b 

5 ×104 

ΔEint  =  nCVΔT 

a)  0 J 

b)  5.0 ×104 J 
c)  about 7.0 ×104 J 
d)  105 J  
e)  Not enough information to tell 

2 
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Clicker question 5 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is the net work done by the system on its environment, W? 

c 

a 

p (Nm–2) 

105 

1 

T0 

V (m3) 

b 

5 ×104 

a)  0 J 

b)  5.0 ×104 J 
c)  about 7.0 ×104 J 
d)  105 J  
e)  Not enough information to tell 

2 
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a)  0 J 

b)  5.0 ×104 J 
c)  about 7.0 ×104 J 
d)  105 J  
e)  Not enough information to tell 

Clicker question 5 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is the net work done by the system on its environment, W? 

c 

a 

p (Nm–2) 

105 

1 

T0 

V (m3) 

b 

5 ×104 

W 

2 
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Clicker question 6 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is the net heat transferred into the system, Q? 

a)  –5.0 ×104 J 

b)  5.0 ×104 J 
c)  –105 J 
d)  105 J  
e)  Not enough information to tell 

c 

a 

p (Nm–2) 

105 

1 

T0 

V (m3) 

b 

5 ×104 

2 
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a)  –5.0 ×104 J 

b)  5.0 ×104 J 
c)  –105 J 
d)  105 J  
e)  Not enough information to tell 

Clicker question 6 

first law of thermodynamics:  ΔEint  =  Q – W  ( =  nCVΔT ) 

ideal gas law:  pV = nRT 

Consider the p-V diagram below in which the system evolves from a → b
 → c.  What is the net heat transferred into the system, Q? 

Q  =  ΔEint + W =  0 + 105 J 
c 

a 

p (Nm–2) 

105 

1 

T0 

V (m3) 

b 

5 ×104 

2 
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Internal Energy (revisited) 

type of gas degrees of
 freedom

 ( f ) 

specific heat at
 constant

 volume (CV ) 

internal
 energy
 (Eint) 

specific heat at
 constant

 pressure (Cp ) 

γ  
(Cp/CV ) 

monatomic 3    R    nRT    R 

diatomic 5    R    nRT    R 

polyatomic (≥3) ~6 3 R 3 nRT 4 R 

3 
2 
5 
2 

4 
3 

3 
2 
5 
2 

5 
2 
7 
2 

5 
3 
7 
5 

Eint =  nCVT  =     nRT  =     NkT                          Cp  =  CV + R f 
2 

f 
2 

n = number of moles; 1 mole = 6.0221 × 1022 particles (NA) 
N = number of particles 
R = gas constant = 8.3147 J mol–1 K–1  
k = Boltzmann’s constant = 1.3807 × 10–23 J K–1 



PHYS 1101, Winter 2009, Prof. Clarke 17 

Adiabatic processes 

reversible 
a = (p1, V1, T1) 
b = (p2, V2, T2) 

a 

p 

p1 

p2 

V2 V1 

b 

V 

T1 

T2 

isotherms 

adiabat 

pV   =  constant γ

isotherm 

a 

p 

p1 

p2 

V2 V1 

b 

V 

T0 

irreversible 
a = (p1, V1, T0) 
b = (p2, V2, T0) 

p1V1  =  p2V2 
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a)  monatomic (γ = 5/3) 

b)  diatomic (γ = 7/5) 
c)  polyatomic (γ = 4/3) 
d)  not enough information to tell 

pV   =  constant γ

Clicker question 7 

Consider the p-V diagram below in which the system evolves reversibly
 along the adiabat from state a to state b.  This gas is… 

b 16 

a 

adiabat 

p (kNm–2) 

V (m3) 

1 

1 8 
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a)  monatomic (γ = 5/3) 

b)  diatomic (γ = 7/5) 
c)  polyatomic (γ = 4/3) 
d)  not enough information to tell 

pV   =  constant γ

Clicker question 7 

Consider the p-V diagram below in which the system evolves reversibly
 along the adiabat from state a to state b.  This gas is… 

paVa   =  1(8)   =  23   = 

pbVb   =  16(1)   =  24 

⇒  γ = 4/3  ⇒  polyatomic 

γ γ

γγ

γ

b 16 

a 

adiabat 

p (kNm–2) 

V (m3) 

1 

1 8 
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a)  0 J 

b)  8 kJ 
c)  16 kJ 
d)  128 kJ 
e)  not enough information to tell 

pV   =  constant γ

Clicker question 8 

Consider the p-V diagram below in which the system evolves reversibly
 along the adiabat from state a to state b.  How much heat is transferred to
 the system? 

b 16 

a 

adiabat 

p (kNm–2) 

V (m3) 

1 

1 8 
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a)  0 J 

b)  8 kJ 
c)  16 kJ 
d)  128 kJ 
e)  not enough information to tell 

pV   =  constant γ

Clicker question 8 

Consider the p-V diagram below in which the system evolves reversibly
 along the adiabat from state a to state b.  How much heat, Q, is
 transferred to the system? 

By definition, Q = 0 for all adiabatic
 processes. 

b 16 

a 

adiabat 

p (kNm–2) 

V (m3) 

1 

1 8 



PHYS 1101, Winter 2009, Prof. Clarke 22 

a)  20 kJ  b) –20 kJ   
c)  24 kJ  d)  –24 kJ 
e)  32 kJ  f)  –32 kJ 
g)  not enough information to tell 

Clicker question 9 

Consider the p-V diagram below in which the system evolves reversibly
 along the adiabat from state a to state b.  How much work, W, does the
 system do on its environment? 

b 16 

a 

adiabat 

p (kNm–2) 

V (m3) 

1 

1 8 

Eint  =  nCVT  =  n3RT   (for a polyatomic gas) 
first law:  ΔEint  =  Q – W        ideal gas law:  pV = nRT  
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a)  20 kJ  b) –20 kJ   
c)  24 kJ  d)  –24 kJ 
e)  32 kJ  f)  –32 kJ 
g)  not enough information to tell 

Clicker question 9 

Consider the p-V diagram below in which the system evolves reversibly
 along the adiabat from state a to state b.  How much work, W, does the
 system do on its environment? 

b 16 

a 

adiabat 

p (kNm–2) 

V (m3) 

1 

1 8 

Eint  =  nCVT  =  n3RT   (for a polyatomic gas) 
first law:  ΔEint  =  Q – W        ideal gas law:  pV = nRT  

ΔEint = 0 – W = 3Δ(nRT) = 3Δ(pV)  
= 3(16 – 8) = 24   ⇒  W = –24 kJ W 
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Summary of Processes 

a = (p1, V1, T2, S3) 

b = (p1, V2, T1, S1) 

c = (p2, V2, T2, S2) 

d = (p4, V2, T3, S3) 

e = (p3, V1, T3, S4) 
a 

p 

p1 

p2 

V2 V1 

d 

V 

T1 

T2 

isotherm: ΔT = 0 

isentrop: ΔS = 0 
(reversible adiabat: Q = 0) 

T3 

S1 

S2 

S3 

S4 
isochor: ΔV = 0 

isobar: Δp = 0 

c 

b 

e p3 
p4 

free expansion (irreversible adiabat: Q = 0) 
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Summary of Processes 

process W Q ΔEint =  
nCVΔT ΔS 

isobar p(V2 – V1)         (V2 – V1)         (V2 – V1)    nCp ln 

isochor 0          (p2 – p1)          (p2 – p1)    nCV ln 

isotherm    nRT ln    nRT ln 0     nR ln 

isentrop 0 0 

free
 expansion 0 0 0     nR ln 

pCp 
R

pCV 
R

) ( V2 

V1 

γ – 1 
p1V1 – p2V2 

γ – 1 
p2V2 – p1V1 

) ( p2 

p1 

) ( V2 

V1 

) ( V2 

V1 

VCV 
R

VCV 
R

) ( V2 

V1 

V1 
) ( V2 
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All processes on p-V, T-V, and T-S diagrams 

a 

p 

T 
S 

V 

p 

V 

a 

T 

T 

S 

V 

p 

V 

a 

T 

T 

S 

S 

p 

V 

An isobar (p), isotherm (T), isentrop (S), and isochor (V)
 emanating from the same initial state (a) as manifest on

 a p-V, T-V, and a T-S diagram. 
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a)  Cp   b)  Cp e 
c)  CV   d)  CV e  
e)  R   f)   R e  
g)  no where near enough information!! 

Clicker question 10 

b 

p 

V 1 e 

a 

ΔS  =  nCp ln        (isobar) 

ΔS  =  nCV ln        (isochor) 

ΔS  =  nR ln        (isotherm) 

) ( V2 

V1 

) ( p2 

p1 

) ( V2 

V1 

some formulae, in case they help… 

Consider the p-V diagram below in which n = 1 mole of gas evolves revers-
 ibly from state a to state b along the path shown.  What is the net change in
 entropy?  (Note, e = 2.71828 = Euler’s number, and thus ln(e) = 1.) 
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a)  Cp   b)  Cp e 
c)  CV   d)  CV e  
e)  R   f)   R e  
g)  Yes there is!! 

Clicker question 10 

Consider the p-V diagram below in which n = 1 mole of gas evolves revers
-ibly from state a to state b along the path shown.  What is the net change in
 entropy?  (Note, e = 2.71828 = Euler’s number, and thus ln(e) = 1.) 

b 

p 

V 1 e 

a 

Since S is a state variable, it doesn’t
 matter which path from a to b you
 choose.  Thus, choose the isobar. 

ΔS  =  nCp ln        (isobar) 

ΔS  =  nCV ln        (isochor) 

ΔS  =  nR ln        (isotherm) 

) ( V2 

V1 

) ( p2 

p1 

) ( V2 

V1 
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a)  2000 J   b)  –2000 J   c)  5000 J  
d)  –5000 J   e)  7000 J   f)  –7000 J  

Clicker question 11 

The evolution of a system from state a to state b is shown on both the p-V
 and T-S diagrams below.  What is the change in internal energy? 

b 

p (Nm–2) 

2,000 

1 V (m3) 

a 

2 

b 

T (K) 

10 S (JK–1) 

a 

30 

500 

250 

ΔEint  =  Q – W  
           =  nCV ΔT 
    pV  =  nRT  
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a)  2000 J   b)  –2000 J   c)  5000 J  
d)  –5000 J   e)  7000 J   f)  –7000 J  

Clicker question 11 

The evolution of a system from state a to state b is shown on both the p-V
 and T-S diagrams below.  What is the change in internal energy? 

Q ~ –7000 J 
W = –2000 J 
ΔEint  =  Q – W  
          ~ –5000 J 

b 

p (Nm–2) 

2,000 

1 V (m3) 

a 

2 

W = –2000 J 

b 

T (K) 

10 S (JK–1) 

a 

30 

500 

250 

Q    –7500 J > ~ 
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a)  0.5    b)  1    c)  1.5 
d)  2    e)  not enough information to tell  

Clicker question 12 

The evolution of a system from state a to state b is shown on both the p-V
 and T-S diagrams below.  About how many moles of gas are in the
 system?  (Take R = 8.) 

b 

p (Nm–2) 

2,000 

1 V (m3) 

a 

2 

b 

T (K) 

10 S (JK–1) 

a 

30 

500 

250 

ΔEint  =  Q – W  
           =  nCV ΔT 
    pV  =  nRT  
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a)  0.5    b)  1    c)  1.5 
d)  2    e)  not enough information to tell  

Clicker question 12 

The evolution of a system from state a to state b is shown on both the p-V
 and T-S diagrams below.  About how many moles of gas are in the
 system?  (Take R = 8.) 

b 

p (Nm–2) 

2,000 

1 V (m3) 

a 

2 

b 

T (K) 

10 S (JK–1) 

a 

30 

500 

250 

     pV  =  nRT  
at state b:  
      pV = 2000 
      RT ~ 2000 
  ⇒  n ~ 1 
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a)  monatomic   b)  diatomic   c)  polyatomic 
d)  not enough information to tell  

Clicker question 13 

The evolution of a system from state a to state b is shown on both the p-V
 and T-S diagrams below.  With n = 1 and ΔEint = –5000 J, this gas is: 

b 

p (Nm–2) 

2,000 

1 V (m3) 

a 

2 

b 

T (K) 

10 S (JK–1) 

a 

30 

500 

250 

ΔEint  =  nCV ΔT 
CV ~ 12  (monatomic) 
CV ~ 21  (diatomic) 
CV ~ 25  (polyatomic) 
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a)  monatomic   b)  diatomic   c)  polyatomic 
d)  not enough information to tell  

Clicker question 13 

The evolution of a system from state a to state b is shown on both the p-V
 and T-S diagrams below.  With n = 1 and ΔEint = –5000 J, this gas is: 

b 

p (Nm–2) 

2,000 

1 V (m3) 

a 

2 

b 

T (K) 

10 S (JK–1) 

a 

30 

500 

250 

ΔEint  =  nCV ΔT 
CV ~ 12  (monatomic) 
CV ~ 21  (diatomic) 
CV ~ 25  (polyatomic) 
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In a complete thermodyn-
 amical cycle, gas
 expands at high pressure
 and compresses at low
 pressure allowing work,
 W, to be extracted in
 each cycle. 

Three pictorial representations of an engine 

Qout 

TC 

c→a  

compression
 stroke 

TH 

Qin 

a→c  

expansion
 stroke 

a 

p 

V 

c 

Qin 

Qout 

W > 0 

   QH = Qin 
   QC = Qout 
Wout = W 
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Maximum efficiency and the Carnot cycle 

a 

T 

S S2 S1 

TC 

TH 

c 

Qin 

Qout 

a 

T 

S S2 S1 

TC 

TH 

c d 

b 
Qin 

Qout 

a 

p 

c 

V 

TH 
TC 

isotherms 

adiabats 

d 

b 

Qin 

Qout 

S1 

S2 

non-optimal thermo
-dynamical cycle for
 an engine 

optimal thermodyn
-amical cycle for an
 engine (Carnot cycle) 

the Carnot engine cycle
 on a p-V diagram 

Note that for an engine, the thermodynamical cycle is always clockwise. 

W > 0 W > 0 
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Refrigerators (heat pumps) 

a 

p 

c 

V 

TH 
TC 

isotherms 

adiabats 

d 

b 

Qout 

Qin 

S1 

S2 

For a refrigerator, the
 cycle is always
 counterclockwise. 
 Expansion happens at
 low pressure,
 compression at high
 pressure and this takes
 work.  Heat is drawn in at
 TC and expelled at TH. 

As for an engine, the most
 optimal thermodynamical
 cycle for a refrigerator is the
 Carnot cycle traversed in
 the counterclockwise
 direction (opposite to the
 engine). 

a 

p 

V 

c 

Qout 

Qin 

W < 0 

 QC = Qin 
 QH = Qout 
Win = –W 


