
Chapter 19, example problems: 
 
(19.06)  A gas undergoes two processes.  First: constant volume @ 0.200 m3, isochoric.   
   Pressure increases from 2.00 × 105 Pa to 5.00 × 105 Pa.  Second: Constant  

  pressure @ 5.00 × 105 Pa, isobaric. Volume compressed from 0.200 m3 to 0.120  
  m3.   

(a)   Show both processes in a pV diagram:  p (105 Pa) 
(b)  Wa→b = 0,   

Wb→c = p ΔV (for isobaric processes) = 
5.00 × 105 N/m2 × (0.120 m3 – 0.200 m3),   
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  = − 4.00 × 104 J. 
∴ Wtotal  = Wa→b + Wb→c  

= − 4.00 × 104 J. 
 (Note: ΔV = Vfinal – Vinitial.) 
 
(19.08)  Bicycle tire pump.  Nozzle closed off.  Slowly depress plunger until V → V/2.   

 Assume air is an ideal gas. Temperature T = constant.   
(a)  Work positive or negative?  Volume reduced while pressure increased (at           

constant T).  W  = Ûp dV is negative.  That is, to compress the gas isothermally, 
work must be done to the gas. 

(b)  Heat flow positive or negative?   Q = ΔU + W.  Here ΔU = 0 since T is not  
changed.  So Q = W is also negative.  That is, for isothermal compression, heat 
must flow out of the system (into a thermal reservoir, which is so large that it can 
absorb quite an amount of heat without raising its temperature appreciably).  If 
heat is not allowed to flow out (by using some thermal insulation), then it is 
called an adiabatic compression.  ΔU must then be positive, so that Q can be zero.  
The temperature of the system must therefore go up.  The pressure of the system 
must also rise more than that of the corresponding isothermal compression by the 
same ΔV.   

(c)  Relative magnitudes of the heat flow and the work: They are equal, because ΔU 
= 0 when T does not change. (For an ideal gas, U depends on T only).  
 

(19.12)  A gas in a cylinder.  Held @ constant pressure 2.30 × 105 N/m2. Cooled and  
  Compressed from 1.70 m3 to 1.20 m3.  Internal energy decreases by 1.40 × 105 J. 

(a)   Work done W = 2.30 × 105 N/m2  × (1.20 m3 − 1.70 m3) = −1.15 × 105 J. 
(b)   Q = ΔU + W = (−1.40 × 105 J) + (−1.15 × 105 J) = −2.55 × 105 J.  

  That is, 2.55 × 105 J of heat must flow out of the system to the environment. 
  [Note:  For Q, flowing in is positive.  For W, coming out (doing work to the  
  environment) is positive.] 

(c)   The gas does not have to be ideal, since the ideal gas law has not been used, and   
 we also did not use the fact that U is a function of T alone. 

V (m3)



(19.22)  Cylinder contains 0.0100 mol of helium at T = 27.0 °C. p 
       (a)  To raise the temperature to 67.0 °C, keeping the volume constant, the heat  

  needed is Q = nCVΔT.  CV  = (3/2) R for monatomic helium gas. Therefore 
  Q = 0.0100 mol × (3/2) × 8.314 J/mol·K × 40 K = 4.988 J. 

p V   [Note: ΔT in K is the same as ΔT in °C.] 
       (b)  To raise the temperature to 67.0 °C, keeping the pressure constant, the heat  

  needed is Q = nCpΔT.  Cp  = (5/2) R for monatomic helium gas. Therefore 
V  Q = 0.0100 mol × (5/2) × 8.314 J/mol·K × 40 K = 8.314 J. 

(c)   The difference 8.314 J – 4.988 J = 3.326 J is due to W = p ΔV (for isobaric   
 processes) = p (Vfinal – Vinitial) = nR(Tfinal – Tinitial)  
 = 0.0100 mol × 8.314 J/mol·K × 40 K = 3.326 J. 
 More heat is required in the case when the pressure is kept constant, since then  
 the volume will increase as the temperature is raised, and therefore the system  
will do work to the environment. 

(d)   The gas is ideal. The change in U is the same as the Q at constant volume, and is  
 equal to 4.988 J, because W = 0 in this case.  Because ΔU is path (process) -  
 independent, so the same change of U also happens in the case when the pressure  
 is kept constant.  This is because  ΔU = Ufinal – Uinitial  depends only on the initial  
 and final temperatures.  (For an ideal gas, U depends only on T.)  If you calculate 
 ΔU  using the formula ΔU = Q – W for the isobaric process, you get the same  
 answer, namely 8.314 J − 3.326 J = 4.988 J.  You can also use the formula U  = 
(3/2) RT  to calculate ΔU for a monatomic gas, and get the same answer. 

   
(19.38)  Cylinder containing 0.100 mol of an ideal monatomic gas. Initially, p = 1.00 ×  

 105 Pa, and V = 2.50 × 10-3 m3.   
(a) Initial absolute temperature T =  pV/nR   

= 1.00 × 105 N/m2 × 2.50 × 10-3 m3 / 0.100 mol × 8.314 J/mol·K = 300.7 K. 

(b) V → 2V.  
(i) Isothermal .  Tfinal = Tinitial = 300.7 K.  pfinal = pinitial / 2 = 0.50 × 105 Pa. 
(ii) Isobaric.  Tfinal = 2Tinitial = 601.4 K. pfinal = pinitial  = 1.00 × 105 Pa.   
(iii) Adiabatic.   pinitial Vinitial

γ
 = pfinalVfinal

γ.  γ = 5/3 for a monatomic gas. 
∴ pfinal = pinitial (Vinitial / Vfinal)γ = 1.00 × 105 Pa × (1/2)5/3 = 0.315 × 105 Pa. 
Tfinal = pV/nR   
= 0.315 × 105 Pa × 5.00 × 10-3 m3 / 0.100 mol × 8.314 J/mol·K = 189.4 K.   
(You can also calculate Tfinal using the formula Tinitial Vinitial

γ -1 = TfinalVfinal
γ-1, 

and obtain  Tfinal =  Tinitial (Vinitial/ Vfinal)γ -1 = 300.7 K × (1/2)2/3 = 189.4 K.) 
 

p (105 Pa) (19.42)  0.5 mol of ideal gas taken from state a to state c: 
       (a)  Tfinal =  Tc = 2.0 × 105 N/m2 × 0.004 m3 /  4.0 

2.0 

a 

  0.5 mol × 8.314 J/mol·K = 192.4 K. 
       (b)  Wtotal  = Wa→b + Wb→c = 3.0 × 105 N/m2 ×  

  0.001 m3 + 2.0 × 105 N/m2 × 0.001 m3 

V (m3) 
0.004 0.003 0.002 

b c 

  = 500 J. 
(c) Tinitial =  Ta = 4.0 × 105 N/m2 × 0.002 m3 /  



0.5 mol × 8.314 J/mol·K = 192.4 K. 
Thus ΔU = 0 between the state a and the state c, and therefore Q = W = 500 J for 
this composite process.  This heat Q is positive, and is therefore flowing into the 
system. 

   (Note that we can not calculate Qa→b or Qb→c here, since we do not know what  
  type of ideal gas is involved here (monatomic, or diatomic, or polyatomic) , and  
  the process ab is not any of the known process. But we do know that Qa→b→c  =  
  Qa→b + Qb→c.  If we were given that the ideal gas is monatomic or diatomic, we  
  would be able to calculate Qb→c.  Then Qa→b would follow from Qa→b→c  − Qb→c.   
  But we still cannot calculate Qa→b directly.)  

 
(19.48)   n = 3 mol.  Ideal gas.  Cycle acba: 
   Cp = 29.1 J/mol·K, 
   ac:  isobaric expansion.  
   ba:  isochoric reduction of pressure. 
   cb:  adiabatic compression. 
   Ta = 300 K.  Tc = 492 K.  Tb = 600 K. 
   Wcycle = Wa→c + Wc→b + Wb→a.   a c 

b p 

V 
   Wb→a = 0. 
   Wa→c =  pa × (Vc  − Va) = nR (Tc  − Ta) 
             =  3 mol × 8.314 J/mol·K × (492 K – 300 K) 
             =  4789 J. 
   Wc→b = −(Ub  − Uc) = −n CV (Tb  − Tc) = = −n × (Cp – R) × (Tb  − Tc) 

           = −3 mol × (29.1 J/mol·K − 8.314 J/mol·K) × (600 K – 492 K) 
           = −6735J, (where we have used Q = ΔU + W and Cp = CV  + R). 

   Wcycle = 4789 J − 6735J =  − 1946 J.  
 
   (Another way to do Wc→b is to use the formulas pVγ  = pcVc

γ  = pbVb
γ  for an 

  adiabatic process, and obtain 
  W = ÛVc 

VbpdV = pcVc
γÛVc 

VbdV / Vγ = pcVc
γ (Vb 

−γ +1 − Vc 
−γ +1 ) / (−γ + 1)  

     = (pcVc
 – pbVb) / (γ − 1) = nR (Tc  − Tb) / (γ − 1)  

     = 3 mol × 8.314 J/mol·K × (492 K – 600 K) / (1.40 – 1.00) 
      = − 6734 J.  (That we did not get  − 6735 J as above is because the given Cp =  
                            29.1 J/mol·K does not have four-significant-digits accuracy. 

    Since this second approach does not need Cp it is actually more     
    accurate if n and the temperatures given are exact.)   

   [Note that we have used γ = Cp / CV = Cp / (Cp – R).] 
  



(19.54)  Thermodynamic process in a solid.  Cu cube, 2.00 cm on a side. Suspended by a  
     string. (data on Table 14.1, 17.2, 17.3)  Heated from 20.0 °C to 90.0 °C.   

  p = 1 atm = 1.01 × 105 N/m2. 
       (a)  ΔV = ?  β = 5.10 × 10−5 (°C)−1.  
  ΔV = β ΔT V0  = 5.10 × 10−5 (°C)−1 × (90.0 °C − 20.0 °C) × (0.02 m)3 

       = 2.856 × 10−8 m3. 
       (b)  W = p ΔV  (for isobaric processes) = 1.01 × 105 N/m2 × 2.856 × 10−8 m3 

      = 2.88 × 10−3 J. 
  Q = mc ΔT  = (ρ V0) c ΔT   
      = [8.90 × 103 kg/ m3  × (0.02 m)3] × 390 J/kg·°C  × 70 °C = 1943.8 J. 

       (c)  ΔU = Q − W @ 1943.8 J 
       (d)  This result shows that cp and cV are practically the same for a solid because the  

volume change under constant pressure as temperature is changed is too small to  
be important (because β is in general very small). Thus isochoric and isobaric 
processes practically involve the same Q if the temperature change is the same. 
This is very different from the behavior of a gas, for which  Cp = CV  + R is true, 
which is equivalent to  cp = cV  + R / M.  Note that in this respect the behaviors of 
liquid and solid are similar. 

 
(19.62)  System with piston containing 0.250 mol of O2 @ 2.40 × 105 N/m2  and 355 K. 

Treat O2 as ideal gas. First expands isobarically to 2V0 (from V0).  It is then    
compressed isothermally back to V0. Finally it is cooled isochorically back to p0.     

(a)     Show all processes in a pV diagram: 
 Isobaric expansion: a → b 
   Volume increased from V0 to 2V0, 
   Temperature increased.  Tb > Ta (= 355 K). 
 Isothermal compression: b → c 
   Volume reduced from 2V0 back to V0, 
   Temperature stays constant.  Tc = Tb > Ta. 
 Isochoric cooling: c → a 
   Temperature drops back to Ta = 355 K. 

p 

(b)   Tb = 2 Ta = 710 K.  Tc = Tb =710 K. 
(c)   pmax = pc = 2 pa = 4.80 × 105 N/m2 . 

 or 4.80 × 105 Pa . 
(d)   Wcycle = Wa → b + Wb → c  (Wc → a = 0.) 

 Wa → b =  p0 × (2V0 − V0 ) = pa × Va = nRTa = 0.250 mol × 8.314 J/mol·K × 355 K  
  =  737.9 J 
Wb → c  =  ÛVb

Vc p(V ) dV = nRTbÛVb
Vc (1/V) dV = nRTb ln (Vc / Vb ) 

 =  0.250 mol × 8.314 J/mol·K × 710 K ln (1/2) = −1022.9 J 
 Wcycle = 737.9 J −1022.9 J = −285.0 J. 
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(19.64)  System with piston containing 0.150 mol of N2 @ 1.80 × 105 N/m2  and 300 K. 
   Treat N2 as ideal gas. First compressed isobarically to (1/2) V0 (from V0).  It 
   then expands adiabatically to V0.  Finally, it is heated isochorically to original 
   pressure p0.   p (a)   Show all processes in a pV diagram: 

 Isobaric compression: a → b 
   Volume dropped from V0 to (1/2)V0, 
   Temperature dropped.   
 Adiabatic expansion: b → c 
   Volume expanded from (1/2)V0 to V0, 
   Temperature dropped further, 
 Isochoric heating: c → a 
   Temperature raised back to Ta = 300 K. 

(b)  V∝T @ constant p. ∴Tb = 150 K. 
 TbVb

γ −1 = TcVc
γ −1.  γ  = 7/5 for diatomic  

 gases.  ∴Tc =  Tb (Vb /Vc) γ −1  
         = 150 K (1/2)0.4 = 113.7 K. 
 

(c)   pmin = pc .  But pbVb
γ  = pcVc

γ .  ∴pc = pb(Vb/Vc)γ  = 1.80 × 105 N/m2  × (1/2)7/5 
                                  = 6.82 × 105 N/m2   or  6.821 × 105 Pa. 

 
   Note:  pc  can also be computed by using pcVc = nRTc , or 
              pc /Tc = nR/Vc = nR/Va = pa /Ta =  1.80 × 105 N/m2  / 300 K.  
   ∴pc =  113.7 K × (1.80 × 105 N/m2  / 300 K) = 6.822 × 105 N/m2 .   
   The slight difference in the fourth significant digit is because Tc is more  

  accurately 113.68 K.  The error is one part in about 6800! This occurs in the fifth  
  significant digit in Tc .  Which answer is more accurate? The first one which   
  used pbVb

γ  = pcVc
γ , so it did not use the calculated  Tc . Of course, if one uses the  

  measured value for γ , instead of the theoretical value 7/5, it would be even more  
  accurate.  
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