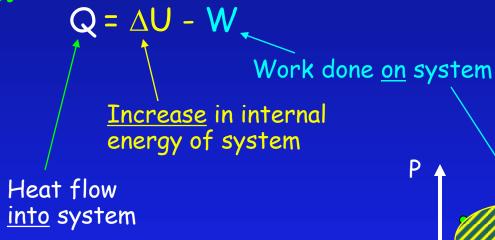
FINAL

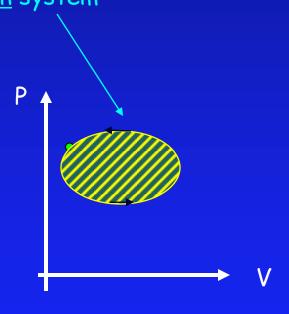
Physics 101: Lecture 28 Thermodynamics II

• Today's lecture will cover Textbook Chapter 15.6-15.9

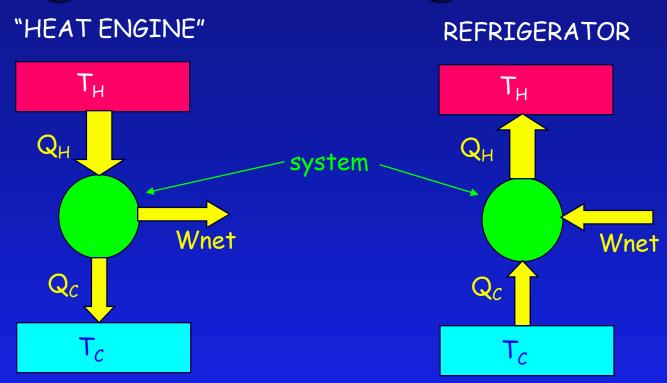

Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook!

Final Exam Info!!

- ~ 45 Problems
- Roughly even distribution over lectures
- Study
 - → Old hour exams
 - Discussion Quizzes
 - → Homework
 - Practice problems


Recap:

- → 1st Law of Thermodynamics
- energy conservation



- U depends only on T (U = 3nRT/2 = 3pV/2)
- point on p-V plot completely specifies state of system (pV = nRT)
- work done is area under curve
- for complete cycle

$$\Delta U=0 \Rightarrow Q=-W$$

Engines and Refrigerators

- system taken in closed cycle $\Rightarrow \Delta U_{system} = 0$
- therefore, net heat absorbed = work done by system

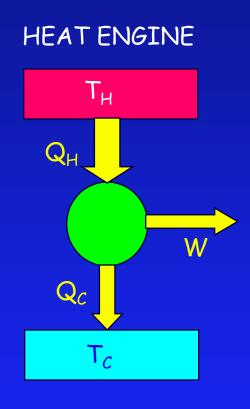
$$Q_H - Q_C = -Won \text{ (engine)} = Wby = Wnet}$$

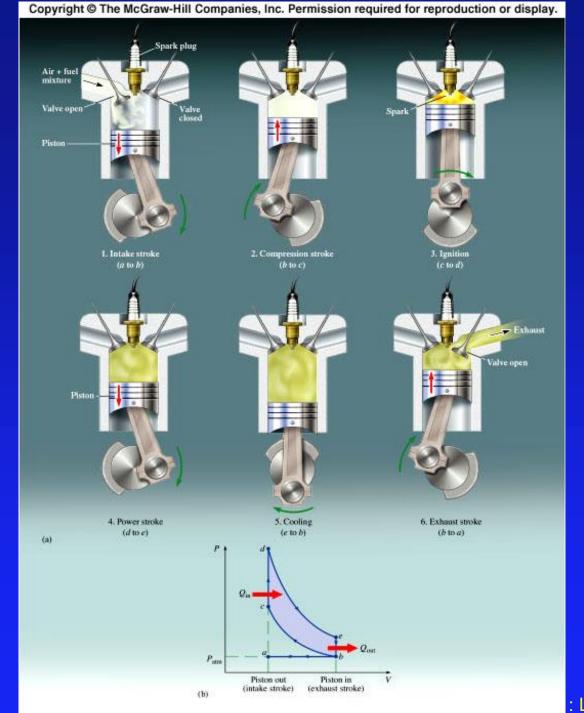
 $Q_C - Q_H = -Won \text{ (refrigerator)} = -Wnet}$
energy into green blob = energy leaving green blob

Heat Engine: Efficiency

The objective: turn heat from hot reservoir into work

The cost: "waste heat"

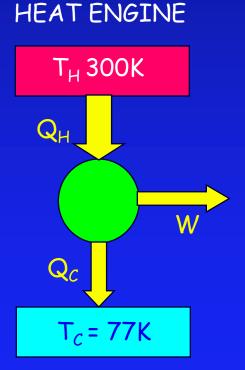

1st Law: $Q_H - Q_C = W$


efficiency $e \equiv W/Q_H$

=W/QH

 $= (Q_H - Q_C)/Q_H$

 $= 1 - Q_C/Q_H$



Heat Engine ACT

• Can you get "work" out of a heat engine, if the hottest thing you have is at room temperature?

1) Yes

2) No

Rate of Heat Exhaustion

An engine operating at 25% efficiency produces work at a rate of 0.10 MW. At what rate is heat exhausted into the surrounding?

```
Efficiency e = Wnet/Qin => Qin = Wnet/e
```

Total heat flux: Qnet = Qin - Qout.

The questions if about Qout/ Δt .

Energy conservation: Wnet = Qnet; devide by Δt :

Rate of work production: Wnet/ Δt = Qnet/ Δt = (Qin –Qout)/ Δt

```
Qout/\Delta t=Qin/\Delta t -Wnet/\Delta t=(Wnet/e)/\Delta t -Wnet/\Delta t=
```

- = $[(Wnet eWnet)/e]/\Delta t = (Wnet/\Delta t eWnet/\Delta t)/e =$
- = (0.1MW 0.25*0.1)/0.25 = 0.3MW

Refrigerator: Coefficient of Performance

The objective: remove heat from cold reservoir


The cost: work

1st Law: $Q_H = W + Q_C$

coefficient of performance

$$K_{r} \equiv Q_{c}/W$$
$$= Q_{c}/(Q_{H} - Q_{c})$$

REFRIGERATOR

New concept: Entropy (S)

- A measure of "disorder"
- A property of a system (just like p, V, T, U)
 - related to number of number of different "states" of system
- Examples of increasing entropy:
 - →ice cube melts
 - → gases expand into vacuum
- Change in entropy:

$$\rightarrow \Delta S = Q/T$$

- » >0 if heat flows into system (Q>0)
- » <0 if heat flows out of system (Q<0)

ACT

A hot (98 C) slab of metal is placed in a cool (5C) bucket of water.

$$\Delta S = Q/T$$

What happens to the entropy of the metal?

A) Increase

- B) Same (C) Decreases

Heat leaves metal: Q<0

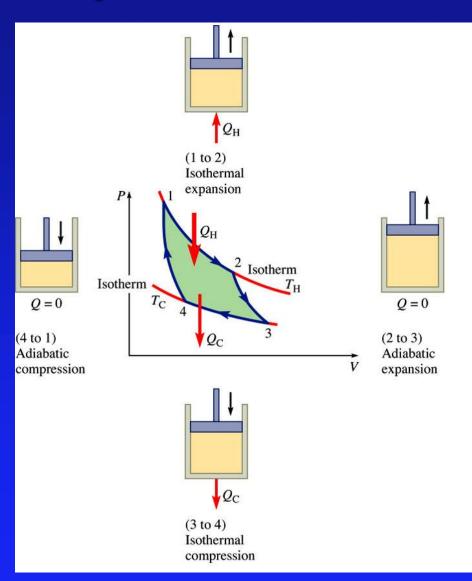
What happens to the entropy of the water?

A) Increase

- B) Same
- C) Decreases

Heat enters water: Q>0

What happens to the total entropy (water+metal)?


- A) Increase
- B) Same C) Decreases

Second Law of Thermodynamics

- The entropy change (Q/T) of the system+environment ≥ 0
 - \rightarrow never < 0
 - → order to disorder
- Consequences
 - → A "disordered" state cannot spontaneously transform into an "ordered" state
 - → No engine operating between two reservoirs can be more efficient than one that produces 0 change in entropy. This is called a "Carnot engine"

Carnot Cycle

- Idealized Heat Engine
 - → No Friction
 - $\rightarrow \Delta S = Q/T = 0$
 - → Reversible Process
 - » Isothermal Expansion
 - » Adiabatic Expansion
 - » Isothermal Compression
 - » Adiabatic Compression

Engines and the 2nd Law

The objective: turn heat from hot reservoir into work

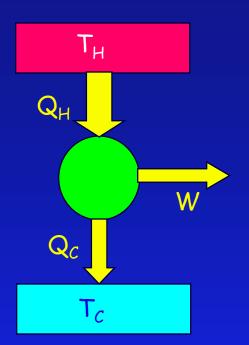
The cost: "waste heat"

1st Law: $Q_H - Q_C = W$

efficiency $e = W/Q_H = W/Q_H = 1 - Q_C/Q_H$

$$\Delta S = Q_C/T_C - Q_H/T_H \ge 0$$

 $\Delta S = 0$ for Carnot
Therefore, $Q_C/Q_H \ge T_C/T_H$
 $Q_C/Q_H = T_C/T_H$ for Carnot


Therefore $e = 1 - Q_C/Q_H \le 1 - T_C/T_H$

 $e = 1 - T_C / T_H$ for Carnot

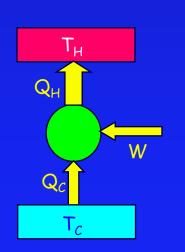
e = 1 is forbidden!

e largest if $T_c \ll T_H$

HEAT ENGINE

Example

Consider a hypothetical refrigerator that takes 1000 J of heat from a cold reservoir at 100K and ejects 1200 J of heat to a hot reservoir at 300K.


Answers:

200 J

1. How much work does the refrigerator do?

2. What happens to the entropy of the universe?

- Decreases
- 3. Does this violate the 2nd law of thermodynamics?

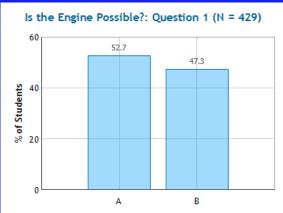
$$Q_C = 1000 \text{ J}$$
 Since $Q_C + W = Q_H$, $W = 200 \text{ J}$ $Q_H = 1200 \text{ J}$

$$\Delta S_{H} = Q_{H}/T_{H} = (1200 \text{ J}) / (300 \text{ K}) = 4 \text{ J/K}$$

$$\Delta S_{C} = -Q_{C}/T_{C} = (-1000 \text{ J}) / (100 \text{ K}) = -10 \text{ J/K}$$

$$\Delta S_{TOTAL} = \Delta S_{H} + \Delta S_{C} = -6 \text{ J/K} \implies \text{decreases (violates 2}^{\text{nd}} \text{ law})$$

Prelecture


Consider a hypothetical device that takes 1000 J of heat from a hot reservoir at 300K, ejects 200 J of heat to a cold reservoir at 100K, and produces 800 J of work.

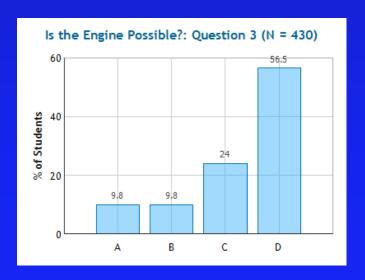
Does this device violate **the second law** of thermodynamics?

- 1. Yes --- correct
- 2. No

total entropy decreases.

$$\Delta S_H = Q_H/T_H = (-1000 \text{ J}) / (300 \text{ K}) = -3.33 \text{ J/K}$$

 $\Delta S_C = +Q_C/T_C = (+200 \text{ J}) / (100 \text{ K}) = +2 \text{ J/K}$
 $\Delta S_{TOTAL} = \Delta S_H + \Delta S_C = -1.33 \text{ J/K} \implies \text{(violates 2}^{nd} \text{ law)}$



- \bullet W (800) = Q_{hot} (1000) Q_{cold} (200)
- Efficiency = W/Q_{hot} = 800/1000 = 80%
- Max eff = $1-T_c/T_h$ =1 100/300 = 67%

Prelecture 3

Which of the following is forbidden by the second law of thermodynamics?

- 1. Heat flows into a gas and the temperature falls
- 2. The temperature of a gas rises without any heat flowing into it
- 3. Heat flows spontaneously from a cold to a hot reservoir
- 4. All of the above

Answer: 3

Summary

- First Law of thermodynamics: Energy Conservation
 - \rightarrow Q = Δ U W
- Heat Engines
 - \rightarrow Efficiency = = 1- Q_C/Q_H
- Refrigerators
 - → Coefficient of Performance = $Q_C/(Q_H Q_C)$
- Entropy $\Delta S = Q/T$
- Second Law: Entropy always increases!
- Carnot Cycle: Reversible, Maximum Efficiency $e = 1 T_c/T_h$