AP REVIEW #27 KEY (Harmonic Motion)

2002B1 (15 points) A 3.0 kg object subject to a restoring force F is undergoing simple harmonic motion with a small amplitude. The potential energy U of the object as a function of distance x from its equilibrium position is shown above. This particular object has a total energy E: of 0.4 J.

(a) What is the object's potential energy when its displacement is +4 cm from its equilibrium position?

(a) 1 point

For a reasonable value of U read from the graph $U = 0.05$ I	1 point
Alternate solution Using the equation for the potential energy of simple harm	Alternate points onic motion:
$U = \frac{1}{2}kx^2$	
Using the distance of 10 cm at which the maximum value of U occurs allows determination of the force constant k.	of 0.4 J for
$0.4 \text{ J} = \frac{1}{2} k (0.1 \text{ m})^2$	
k = 80 N/m	
For determining the value of U at 4 cm	1 point
$U = \frac{1}{2} (80 \text{ N/m}) (0.04 \text{ m})^2$	
U = 0.06 J	

(b) What is the farthest the object moves along the x-axis in the positive direction? Explain your reasoning.

(b) 3 points

For indicating that the maximum possible position in the +x-direction is 10 cm	1 point
For a complete explanation	2 points
A full-credit explanation would indicate either of the following:	
 The particle stops at this point (or that the kinetic energy is zero here) because 	
all of the energy is in the form of potential energy.	
The maximum potential energy cannot be greater than the total energy.	
Incomplete explanations (such as only saying that the potential energy is 0.4 J	
at 10 cm) received one point. However, only saying that the total energy is 0.4 J	
received no credit, since this is just a restatement of given information.	
(c) Determine the object's kinetic energy when its displacement is -7 cm.	
(c) 3 points	

For a reasonable value of U read from the graph (between 0.18 J and 0.22 J)	1 point
This point was also awarded for a correct calculation of U using the force con-	stant
determined in part (a).	
For subtracting this value of U from the total energy to obtain the kinetic energy	1 point
For a consistent final answer	1 point
$K \approx 0.2 \text{ J}$	-

(d) What is the object's speed at x = 0? (d) 4 points

4 points	
For any indication that the potential energy is zero at $x = 0$	1 point
For setting the kinetic energy equal to the total energy	1 point
$K = \frac{1}{2}mv^2 = E_{total}$	
$v = \sqrt{2E_{total}/m}$	
For correctly substituting the energy and mass into the above equation	1 point
$v = \sqrt{2(0.4 \text{ J})/(3.0 \text{ kg})}$	
For the correct answer	1 point
v = 0.5 m/s	

- (e) Suppose the object undergoes this motion because it is the bob of a simple pendulum as shown above. If the object breaks loose from the string at the instant the pendulum reaches its lowest point and hits the ground at point *P* shown, what is the horizontal distance *d* that it travels?
 - (e) 4 points

Using the kinematic equation for the vertical motion:	
$y_f = y_i + v_{0y}t - \frac{1}{2}gt^2$	
For correctly substituting $v_{0y} = 0$	1 point
Setting y_f also equal to zero and solving for t:	
$t = \sqrt{2y_i/g} = \sqrt{2(0.5 \text{ m})/(10 \text{ m/s}^2)}$	
For the correct value of t	1 point
t = 0.3 s	
Using the equation for the horizontal distance:	
$d = v_x t$	
For correctly substituting the value of t above and the value of v_x from part (d)	1 point
d = (0.5 m/s)(0.3 s)	
For the correct answer	1 point
d = 0.2 m	

2005B2 (10 points)A simple pendulum consists of a bob of mass 1.8 kg attached to a string of length 2.3 m. The pendulum is held at an angle of 30° from the vertical by a light horizontal string attached to a wall, as shown above.

a. On the figure below, draw a free-body diagram showing and labeling the forces on the bob in the position shown above.

(c)

2005Bb2-10 points) A simple pendulum consists of a bob of mass 0.085 kg attached to a string of length 1.5 m. The pendulum is raised to point Q, which is 0.08 m above its lowest position, and released so that it oscillates with small amplitude θ between the points P and Q as shown below.

