Simple Harmonic Motion Practice 1

Name

1. A pendulum has a length of 0.5 meters, and a mass of 0.5 kg. It is pulled to a height of 0.2 meters, and released, as shown.

- a. What is the potential energy of the mass at its highest point?
- b. What is the speed of the mass at its lowest point?
- c. What is the period and the frequency of the pendulum?
- d. How would the period change if a longer string were used? Explain.
- How would the period change if a greater mass was used? Explain.
- How would the period change, if the pendulum was on the moon, where gravity is smaller than on Earth? Explain.

a) PE=ngh= (.5)(10)(.2)=255 1 b) at the bottom the mass has 25 of KE KE = 1/2 mv2 125=1/21.5) V2 [V=2m/5]

c)
$$T = 2\pi \sqrt{\frac{2}{g}} = 2\pi \sqrt{\frac{5}{10}} = 1.40s$$

- d) Twoold mireuse > T=2TT/g = if lis bigger, Tis

 bigger

 e) Twoold not change > T=2TT/g no dependence on

 muse

 - f) Twoold increase -> T=ZTT/E Ng ~ f gl, T1

- 2. A spring is hung from a ring stand, and a 0.4 kg mass is hung from it. The change in length of the spring is 0.6 meters. The mass is then lifted a distance of 0.2 meters, and dropped, causing the mass to oscillate.
 - a. What is the spring constant of the spring?
 - b. What will be the period and frequency of the mass-spring system?
 - c. Write an equation for the height of the mass as a function of time.
 - d. What will be the height of the mass 5 seconds after it is released?
 - e. How would the period of the system change if a stronger spring (larger k) was used? Explain.
 - f. How would the period change if the system were taken to the moon? Explain.

a)
$$\int_{\frac{\pi}{2}}^{2} x = i6m \quad F = kx$$
 $H = KC.6$
 $K = 6.6 \text{ N/m}$
 $\int_{\frac{\pi}{2}}^{2} x = i6m \quad F = kx$
 $\int_{\frac{\pi}{2}}^{2} x = i6m \quad F = kx$

c)
$$X = A \cos(2\pi f t)$$

 $X = .2 \cos(2\pi (.650)t)$
 $X = .2 \cos(4.08t)$

$$\frac{1}{1} = \frac{2\cos(4.08)(5)}{x = 0.04m}$$

3. A 0.5 kg mass is allowed to oscillate on a spring. A graph of its position as a function of time is given below:

- a. What are the amplitude, period and frequency for the mass?
- b. What is the spring constant?
- c. How much energy is stored in the spring at the beginning of the problem?
- d. What will be the maximum velocity of the mass?
- e. Write an equation for the position of the mass as a function of time.
- What will be the position of the mass after it has been oscillating for 12 seconds?

a) Amplitude =
$$0.3 \text{ m}$$
, $T = 2.5 \text{ s}$, $f = \frac{1}{2.5} = .4 \text{ c/s}$
b) $T = 2\pi \sqrt{\frac{3}{K}}$
 $25 = 2\pi \sqrt{\frac{5}{K}}$

$$5 = 2\pi \sqrt{\frac{5}{k}}$$
 $142 = \frac{1}{2}(.5)v^{2}$
 $.142 = \frac{1}{2}(.5)v^{2}$
 $.158 = .5$
 (5.06)

c)
$$PE_{s}=\frac{5}{k}$$

 $=\frac{158=.5}{k}$
 $=\frac{158=.5}{k}$

$$f) \times = .3 \cos ((2.813)(12))$$
 $1 \times = .092 m$

Review Problems:

- 1. A 2 kg mass starts from rest, and is pulled by a force of 15 Newtons across a rough surface. It covers a distance of 1 meter in 0.67 seconds.
 - a. What is the acceleration of the mass?
 - b. Draw a free-body diagram showing all of the forces on the mass.
 - Find the coefficient of friction between the mass and the surface.

a)
$$\Delta x = 1m$$

 $t = .67s$
 $v_i = 0$
 $a = ?$

a)
$$\Delta x = 1m$$
 $\Delta x = y_{0}k + \frac{1}{2}n^{2}$
 $t = -67s$ $1 = \frac{1}{2}a(.67)^{2}$
 $u_{0} = 0$ $1 = \frac{4.45m_{0}}{1}$

b)
$$F_{N}=20N$$
 () $F_{N}=10$ () $F_{N}=10$

2. A ball is thrown with a velocity of 20 m/s at an angle of 35° , as shown.

- What are the vertical and horizontal components of the ball's velocity?
- b. How long will the ball be in the air?
- How far will it travel?

c. How far will it travel?

b)
$$x = \frac{1}{47}$$
 $\frac{1}{47}$
 $\frac{1}{47$