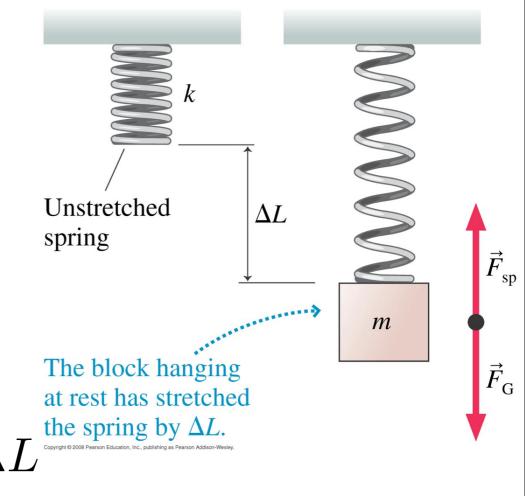
Lecture 2

Outline

- Vertical oscillations of mass on spring
- Pendulum
- Damped and Driven oscillations (more realistic)

Vertical Oscillations (I)

 At equilibrium (no net force), spring is stretched (cf. horizontal spring): spring force balances gravity



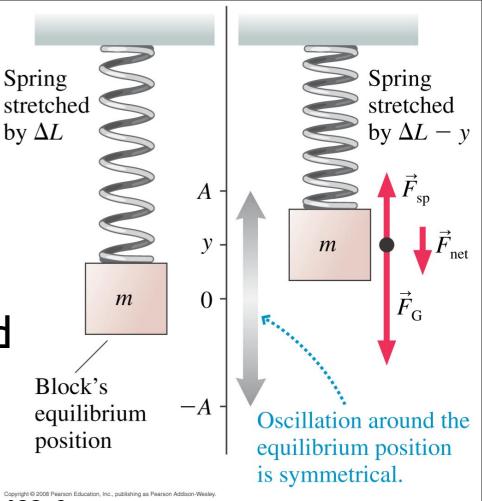
Hooke's law: $(F_{sp})_y = -k\Delta y = +k\Delta L^{\text{correct constraints}}$ Newton's law: $(F_{net})_y = (F_{sp})_y + (F_G)_y = k\Delta L - mg = 0$ $\Rightarrow \Delta L = \frac{mg}{k}$

Vertical Oscillations (II)

 Oscillation around equilibrium, y = 0 (spring stretched) block moves upward, spring still stretched

 $(F_{net})_y = (F_{sp})_y + (F_G)_y = k \left(\Delta L - y\right) - mg^{\text{torses}}$ Using $k\Delta L - mg = 0$ (equilibrium), $(F_{net})_y = -ky$

• gravity ``disappeared''... \Longrightarrow as before: $y(t) = A \cos(\omega t + \phi_0)$



Example

 A 8 kg mass is attached to a spring and allowed to hang in the Earth's gravitational field. The spring stretches 2.4 cm. before it reaches its equilibrium position. If allowed to oscillate, what would be its frequency?

Pendulum (I)

- Two forces: tension (along string) and gravity
- Divide into tangential and radial...

m $(F_{net})_{tangent} = (F_G)_{tangent} = -mg\sin\theta = ma_{tangent}$ S Arc length 0 acceleration around circle **(b)** The tension has Center only a radial of circle component. $\frac{d^2s}{dt^2} = -g\sin\theta$ more complicated $(F_{\rm G})_t$ Tangential axis The gravitational force $(F_{\rm G})_{\rm r}$ has a tangential component $-mg\sin\theta$.

 θ and s are

negative on

the left.

 θ and s are

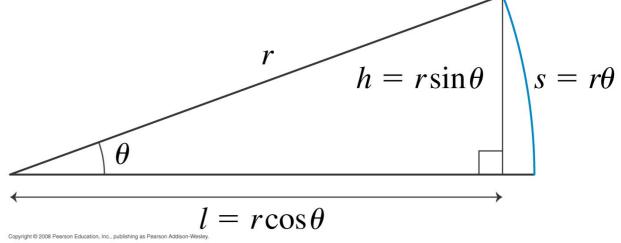
positive on

the right.

L

Pendulum (II)

• Small-angle approximation $\sin \theta \approx \theta$ (θ in radians)



 $(F_{net})_{tangent} \approx -\frac{mg}{L}s$ $\Rightarrow \frac{d^2s}{dt^2} = -\frac{g}{L}s \quad \text{(same as mass on spring)}$ $\Rightarrow s(t) = A\cos(\omega t + \phi_0) \text{ or } \theta(t) = \theta_{max}\cos(\omega t + \phi_0)$

$$\omega = 2\pi f = \sqrt{\frac{g}{L}}$$

(independent of m, cf. spring)

Example

 The period of a simple pendulum on another planet is I.67 s. What is the acceleration due to gravity on this planet? Assume that the length of the pendulum is Im.

Summary

- linear restoring force (\propto displacement from equilibrium) e.g. mass on spring, pendulum (for small angle)
- (x → y for vertical): $x(t) = A \cos(\omega t + \phi_0)$ $v_x(t) = -\omega A \sin(\omega t + \phi_0)$
- A, ϕ_0 determined by initial conditions (t=0) $x_0 = A \cos \phi_0, v_{0 x} = -\omega A \sin \phi_0$
- ω depends on physics ($\sqrt{k/m}$ or $\sqrt{g/L}$), not on A, ϕ_0
- conservation of energy (similarly for pendulum):

$$1/2 mv_x^2 + 1/2 kx^2 = 1/2 kA^2 = 1/2 mv_{max}^2$$

KE PE turning point equilibrium

Pendulum (III)

 Physical pendulum (mass on string is simple pendulum)

(restoring) torque moment arm $\tau = -Mgd = -Mgl \sin \theta \approx -Mgl\theta$ (small angle) α (angular acceleration) $= \frac{d^2\theta}{dt^2} = \frac{\tau}{I \text{ (moment of inertia)}} \Rightarrow \frac{d^2\theta}{dt^2} = \frac{-Mgl}{I}\theta$ SHM equation of motion: $\omega = 2\pi f = \sqrt{\frac{Mgl}{I}}$

Damped Oscillations (I)

 dissipative forces transform mechanical into heat e.g. friction



model of air resistance (b is damping coefficient, units: kg/s)

$$D = -b\bar{v} \text{ (drag force)} \Rightarrow$$

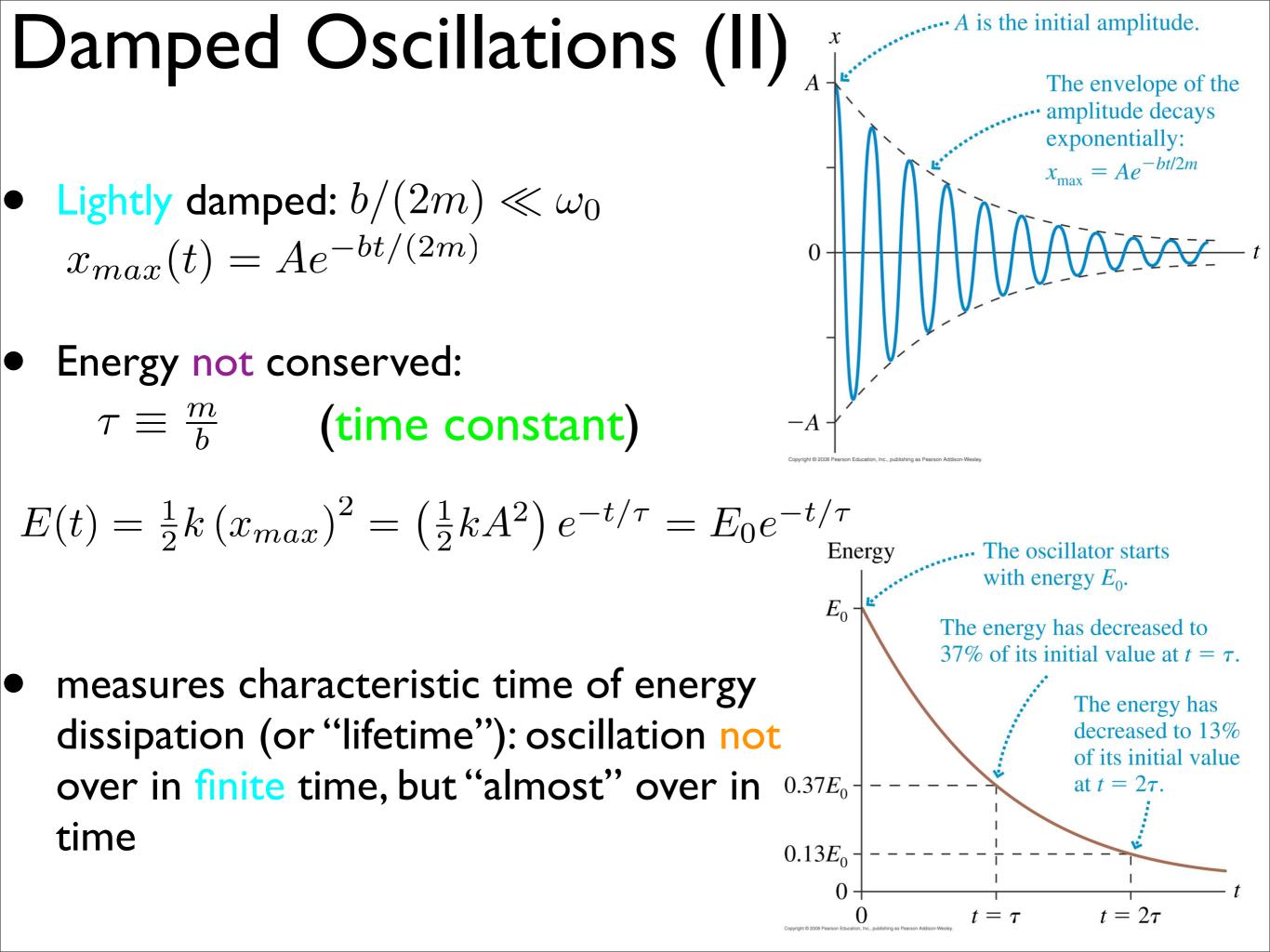
$$(F_{net})_x = (F_{sp})_x + D_x = -kx - bv_x = ma_x$$

$$\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = 0 \text{ (equation of motion for damped oscillator)}$$

Check that solution is (reduces to earlier for b = 0)

 $x(t) = Ae^{-bt/2m}\cos(\omega t + \phi_0)$ (damped oscillator)

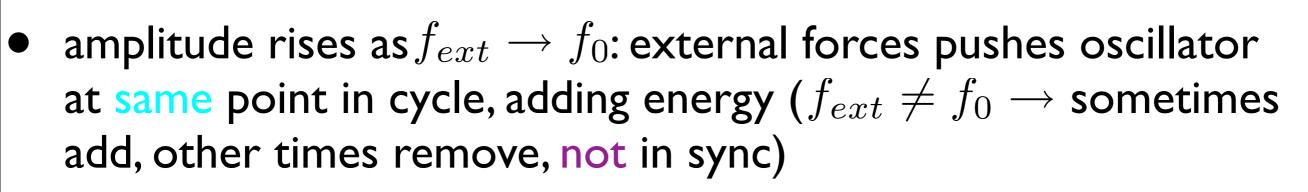
$$\omega = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} = \sqrt{\omega_0^2 - \frac{b^2}{4m^2}}$$



Resonance

- Driven oscillations

 (cf. free with damping so far):
 periodic external force
 e.g. pushing on a swing
- f_0 : natural frequency of oscillation e.g. $\sqrt{k/m}$ or $\sqrt{g/L}$
- f_{ext} : driving frequency of external force



• amplitude very large: $f_{ext} = f_0$ (resonance)

