MAGNETISM

2000 years ago : (Natural magnets)

Greeks were aware that "magnetite" stones attract pieces of iron

1269, Pierre de Maricourt:

needle

Every magnet has 2 poles

Magnetic poles always occur in pairs

So far there is not conclisive evidence of the existence of isolated magnetic poles (MONOPOLE)

1600, Wialliam Gilbert

THE MAGNETIC FIELD: B

The force on an electric charge & depends La Not only on WHERE IT is: (7) L_{p} but also on how is **Electric v charge MAGNET** $\vec{F} = q\vec{E(r)} + q\vec{V} \times \vec{B(r)}$ Х

Force that depends on the velocity of the charge

Definition of the magnetic field B

For each arbitrary position "P" it occurs the following:

- **velocity is parallel to XX'. a) When a charges passes through "P", no matter its velocity, it experiences a force perpendicular to the line XX', except when the**
- **b) But when q is stationary at "P" it experiences no force**

Conclusion:

XX' defines the direction of the magnetic field at the point P.

$$
\overrightarrow{F} = \overrightarrow{P} \times \overrightarrow{B}
$$
Definition of the magnetic field B

Magnetic field lines

- **In this chapter, we will analyze those situation in which the magnetic B is given (without worrying about how it is generated).**
- **In the next chapter we will learn how to calculate the magnetic filed produced by currents flowing along a line or along a ring.**

We start with the simplest case to analyze: the motion of a point charge moving across a uniform magnetic field.

Motion of a point charges q in a uniform magnetic field

Accordingly,

The X indicates that B is perpendicular to the plane of this page, oriented into the page.

Magnetic fields do not do work on the charged particles

If q is undergoing circular motion, the magnetic force must be responsible for the centripetal acceleration

$$
F = m \frac{v^{2}}{R}
$$
 Q
From Q and Q we obtain

$$
q \vee B = m \frac{v^{2}}{R} \Rightarrow \boxed{v = \frac{q}{m}BR \qquad v = 8 \times 10^{6} \%
$$

use m = 1.67 $\times 10^{27}$ kg

the result

$$
V=\frac{1}{(4/m) \ 8} \ \vee
$$

indicates that, for a given charged particle and a fixed value of the magnetic field, praticles moving at higher speed describe circulna paths of bigger radio

How long does the protoxytance to complete
ONE Revolution Cfrom the previous example)

$$
T = \frac{length}{velocity} = \frac{2 \pi R}{V}
$$

peniod

$$
=\frac{2\pi R}{\frac{2}{m}BR}=\left[2\pi\frac{1}{\frac{2}{m}B}=T\right]
$$

Period of the circular orbit

Both complete one orbit in the same amount of time T How many turns does the proton vin J sec?
In other words what is the frequency f ?

$$
f = \frac{1}{T} \qquad \qquad f = \frac{1}{2\pi} \frac{2}{m} B \qquad \text{energy}
$$

People typically use angular prequency w:

 $rac{1 + 2}{100}$ = $rac{1}{100}$ = $rac{1}{100}$ = $rac{1}{100}$ = $rac{1}{100}$ = $rac{1}{100}$ = $rac{1}{100}$ $w = \frac{radi}{sec}$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\left|\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\right|\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{$

$$
\omega = \frac{2}{m}B
$$

Notice: For a given q/m

 For a constant magnetic field: $\frac{v}{R} = \frac{4}{m}B$ **The higher the speed, the larger the radius**

For a constant magnetic field, $\frac{1}{7}$ = f = $\frac{1}{2\pi}$ $\frac{4}{\pi}$ B **T and f are independent of the speed**

> **Particles with higher speed move in large circles, slower particles move in smaller circles**

All particles with the same q/m take the same time to complete one revolution

For constant magnetic field (and same q/m):

v/R = (q/m) B

 β does not contaul \vec{v} . changing B does not change |J |
Cthe speed v = |J | remains the same)

For constant speed (and same q/m):

 v = (q/m) R B

 $\overline{\mathbf{x}}$ $\overline{\mathbf{x}}$ **Weaker** × magnetic field B₁ $\overline{\mathbf{x}}$ 又 $\boldsymbol{\chi}$ $\boldsymbol{\mathsf{x}}$ $\overline{\mathbf{x}}$ × x x R_{i} $\overline{\mathbf{X}}$ × \mathcal{X}_1 λ $\mathbf x$ $\boldsymbol{\varkappa}$ $\overline{\mathbf{x}}$ $\overline{\mathsf{X}}$ $\overline{\mathbf{x}}$ X $\overline{\mathbf{x}}$ $\mathbf x$ × $\mathbf x$ X_c x $\boldsymbol{\chi}$ X. \mathcal{X} × \mathbf{x} \mathbf{x} х $B_1 < B_2$ K $\boldsymbol{\kappa}$ $\boldsymbol{\mathsf{X}}$ $\bm{\times}$ **implies** $R_1 > R_2$ **Stronger magnetic field B2** $\overline{\mathsf{X}}$ $\boldsymbol{\mathsf{X}}$ $\bm{\mathsf{X}}$ \boldsymbol{X} 乂 \boldsymbol{X} X. X X X X X

Example. Electrons are extracted from a metallic hair-pin source, and accelerated by a 350 Volts. Subsequently the electrons enter a region where there exists a magnetic field. Calculate the radius of the electrons trajectory when inside the region of magnetic field.

Example. Electrons undergo circular motion (radius R= 0.25 m) inside a region where there exists a uniform magnetic field. The kinetic energy of the electrons is $K= 1.2 \times 10^3$ electron-volts. Calculate the magnitude of the magnetic field. Calculate also the frequency of the motion.

The Mass Spectrometer

source

 \mathcal{E} xample A ⁵⁸ N_i ion of charge te and mass m= 9.62 x 10²⁶142 is accelerated through a fotential difference of 3KV and deflected in a maantic pield of 0.12 T a) Find the radius of curvature of the

oabit of the ion. $\frac{9.62 \times 10^{26} \text{ K}}{1.6 \times 10^{19} \text{ C}} = \frac{(0.12 \text{ T})^2}{8 \times 3 \times 10^3 \text{ V}} \times \frac{2}{1.6 \times 0.5010 \text{ m}}$ b) Find the difference in the radic of

$$
\frac{m_1}{m_2} = \frac{x_1^2}{x_2^2}
$$

We have
$$
\frac{m_1}{m_2} = \frac{58}{60}
$$

 $\frac{R_1}{R_2}$ = 0.983 = $\frac{R_1}{R_2}$

 $\mathcal{L}^{\mathcal{P}}$. Figure is a set $\mathcal{L}_{\mathcal{A}}$

 \Rightarrow

 $\overline{\mathbf{x}}$,

$$
\frac{\sum_{i=1}^{n} S_{N_i}}{S_{N_i}} = \frac{C_{N_i}}{C_{N_i}}
$$

Since R₁ = 0.5010 m
then R₂ = 0.5095m
$$
\Rightarrow
$$
 R₂ = R₁ = 8.56 m

The Cyclotron

high frequency alternating voltage F_{osc}

We algendy know that, given a particle of mass m and change 7, it will circle inside a uniform magnetic field with p_{n} equency $f = \frac{1}{2\pi} \frac{1}{m} B$ regnadless of the praticle's speed

So, in a cyclotnom the alternating
volume (see previous Figure) is tuned
until
$$
F_{osc} = \frac{1}{2\pi} \frac{7}{m} B
$$

 $\mathcal{F}_{\rm eff}$:

$$
\begin{array}{|c|c|}\n\hline\n\text{EXERCISE:} & \text{Draw} & \text{sehematically the tangent} \\
\hline\n\text{toay followed by the indicated} \\
\hline\n\text{electron} & \text{beam} \\
\hline\n\text{plate} & \text{beam} \\
\hline\n\text{other} & \text{beam} \\
\hline\n\text{finite} & \text{beam} \\
\hline\n\text{finite} & \text{beam} \\
\hline\n\text{time} & \text{beam} \\
\hline\n\text{state} & \text{beam} \\
\hline\n\text{time} & \text{beam}
$$

 $\omega_{\rm{eff}}$

 $\mathcal{A}^{\text{max}}_{\text{max}}$

$$
y = \frac{1}{2}at^2
$$

How much does the electron deplect after passing the plates? Me=? Answer; We obtain y when $t = \frac{L}{V}$

$$
A_d = \frac{1}{2} \alpha \left(\frac{L}{v}\right)^2
$$

$$
M_d = \frac{1}{2} \frac{e}{m} E \frac{L^2}{\sqrt{2}}
$$

of the electrom **DISCOVERY**

. The staength of the magnetic field is increased and adjusted until the incident praticle does not experience any vertical deflection.

 $cE = c \vee B$ No deplection \limtext{p} $V = \frac{E}{R}$

. When the magnetic field is tunned off the panticle is deplected ventically by a adistance of whose relationship with Vais

$$
\vee^2 = \left(\frac{e}{m}\right) \frac{E}{2} - \frac{L^2}{4} \qquad \textcircled{3}
$$

From experiments (I) and (2) we obtain

\n
$$
\frac{E^{2}}{B^{2}} = \left(\frac{c}{m}\right) \frac{E}{2} \frac{L^{2}}{12}
$$
\n
$$
\Rightarrow \frac{c}{m} = \frac{B^{2}}{E} \frac{L^{2}}{211}
$$
\n
$$
\frac{J}{1897}
$$

Problem 9P	Value										
\n $\frac{1}{100 \text{ rad/s}}$ \n	\n $\frac{1}{100 \text{ rad/s}}$ \n										
\n $\frac{1}{100 \text{ rad/s}}$ \n	\n $\frac{1}{100 \text{ rad/s}}$ \n										
\n $\frac{1}{100 \text{ rad/s}}$ \n	\n $\frac{1}{100 \text{ rad/s}}$ \n										
\n $\frac{1}{100 \text{ rad/s}}$ \n	\n $\frac{1}{100 \text{ rad/s}}$ \n										
\n $\frac{1}{100 \text{ rad/s}}$ \n	\n $\frac{1}{100 \text{ rad/s}}$ \n	\n $\frac{1}{100 \text{ rad/s}}$ \n									
\n $\frac{1}{100 \text{ rad/s}}$ \n											
\n $\frac{1}{100 \text{ rad/s}}$ \n	\n $\frac{1}{100 \$										

 F_{elect} = F_{mag} $e \frac{\mathbf{V}_{\text{H}}}{4}$ = $e \vee B$ v_{ℓ} $\begin{array}{c} v_{\ell} & v_{\ell} & v_{\ell} \neq v_{\ell} & v_{\ell} & v_{\ell} \neq v_{\ell} & v_{\ell} & v_{\ell} & v_{\ell} \neq v_{\ell} & v_{\ell} & v_{\ell} & v_{\ell} & v_{\ell} \end{array}$ $\frac{V_{H}}{dB}$ $dark$ hange
ers per c_{Λ} RAIEFS volume unit. e \vee $mc \frac{V_H}{d B}$ $\overline{1}$ \mathbf{B} The Hall voltage VH provides a method to measure maynetic $fields.$

Had we assumed the cuarent is was established by positive changes in motion, we would have obtain the following situation: Since we can measure $V = V_b - V_a$ we should have been able to $V_a < V_b$ determine which voltage, Va on Vb measuaable is higher. the situation

 $V_a < V_b$

has not been has not voor.
bisenved in METALS, which confiam that the change canniers in metals are regative ch AR 3 CS.

 \bullet However, both situat*ions* $\rm V_a\,{<}\,V_b$ and $\rm V_a\,{>}\,V_b$ are observed in SEMICONDUCTORS.