Mathematical representation

\smile		
∆t=∆ṗ _{sys}	$\sum \vec{F}_{ext \Delta t} = \Delta \vec{p}_{sys}$	$\mathcal{D}_{adt} = \Delta \vec{p}_{sys}$
Ö≈∆p,	Ō≈∆ṗ _{sys}	Õ≈∆p⊂
<u> </u>		
∑ p ̂,≈∑ p ̂,	$\sum \vec{\mathbf{p}}_i \approx \sum \vec{\mathbf{p}}_i$	$\sum \vec{\mathbf{p}}_{i} \approx \sum \vec{\mathbf{p}}_{r}$

Caution

- Velocity is dependent on the coordinate system. Thus momentum is also dependent on the coordinate systems.
 - Make sure that the velocities used in conservation of momentum are all with respect to the same reference frame.

$$\vec{v}_{A/B} = \vec{v}_{A/C} + \vec{v}_{C/B}$$

ocity of A with $\vec{v}_{A/B} = -\vec{v}_{B/A}$

Newton's 2nd law of motion update

$$\sum \vec{\mathbf{F}}_{ext} = m_{sys} \, \vec{\boldsymbol{a}}_{cm} \quad \longrightarrow \quad \sum \bar{\vec{\mathbf{F}}}_{ext} = \frac{\Delta \vec{p}_{sys}}{\Delta t}$$

