Thermo Equations List all of the thermodynamic equations you can come up with.

Table 1: Thermodynamic Equations

$$\begin{array}{ll} Q=mc\Delta T & \Delta E_{th}=W+Q & e_{max}=1-\frac{T_C}{T_H}\\ \Delta E_{th}=\frac{3}{2}nRT & Q_H-Q_C=W_{out} & W=P\Delta V\\ PV=nRT=Nk_bT & W=mg\Delta y & Q_f=\pm mL_f\\ E_{th}=N\bar{K}=N\frac{1}{2}mv^2 & K=\frac{3}{2}k_BT=\frac{1}{2}mv^2 & \frac{Q}{\Delta t}=\left(\frac{kA}{L}\right)\Delta T\\ \frac{\sum Q}{\Delta t}=e\sigma A(T_o^4-T^4) & E=Q+W & Q=nC_p\Delta T\\ C_p=\frac{5}{2}R & Q=nC_v\Delta T & C_v=\frac{3}{2}R\\ e=\frac{get}{pay}=\frac{W_{out}}{Q_H} \end{array}$$

Inefficient Engine An inefficient heat engine operates at only 10% of its maximum possible efficiency. To successfully do its job it needs to do 800J of work. If its cold reservoir is at $18^{\circ}C$ and its hot reservoir is at $550^{\circ}C$,

- What is the actually efficiency of this heat engine?
- How much energy does it take from the hot reservoir?
- How much does it give to the cold reservoir?

 $^{^0\}mathrm{Select}$ problems may be modified from Walsh, Harrison, or the Internet.

e	$= 0.1e_{max}$	(1)
e_{max}	$=1-\frac{T_c}{T_H}$	(2)
e	$= 0.1(1 - rac{T_c}{T_H})$	(3)
e	$= 0.1(1 - \frac{291.15^{\circ}K}{823.15^{\circ}K})$	(4)
e	= 0.06463	(5)
		(6)
e	$=rac{W_{out}}{Q_H}$	(7)
Q_H	$= \frac{W_{out}}{e}$	(8)
Q_H	$= \frac{800J}{0.06463}$	(9)
Q_H	= 12,378J	(10)
		(11)
$Q_H - Q_c$	$= W_{out}$	(12)
Q_c	$= Q_H - W_{out}$	(13)
Q_c	= 12,378J - 550J	(14)
Q_c	= 11,828J	(15)

Car Lift Google says the average car weighs about 1500kg and the average American weights about 80kg.

- How many people would need to stand on the left side for the car to rise if A_2 is twice as big as $A_1?$
- How much bigger would A_2 need to be compared to A_1 for you to make the car rise by yourself?

$$P = \frac{F\perp}{A} \qquad [assumingFisperpendicular] \qquad (16)$$

$$F_{people} \qquad = m_{ave}(\#ofpeople)g \qquad (17)$$

$$= m_{ave}(\#ofpeople)g \tag{17}$$

$$= m_{car}g$$
(18)
$$= P_{car} \qquad [Pascal'sPrinciple] \qquad (19)$$

$$A_1 \qquad A_2$$

 $(\#of people) q \qquad m_{car} q$

$$\frac{m_{ave}(\#ofpeople)g}{A_1} = \frac{m_{car}g}{A_2} \tag{21}$$

$$Twiceasbig: A_2 = 2A_1 \tag{22}$$

$$\frac{(80kg)(\#ofpeople)g}{A_1} = \frac{(1500kg)g}{2A_1}$$
(23)

$$(\#ofpeople) = 9.4\tag{24}$$

So it would take 10 people.

If doing it alone, again assuming you weigh 80kg

$$\frac{F_{people}}{A_1} = \frac{F_{car}}{A_2} \tag{25}$$

$$\frac{m_{you}g}{A_1} = \frac{m_{car}g}{A_2} \tag{26}$$

$$\frac{80kg}{A_1} = \frac{1500kg}{xA_1}$$
(27)

$$x = \frac{1500kg}{80kg} = 18.75\tag{28}$$

So A_2 would have to be 18.75 times bigger than A_1 for you to lift the car by yourself.

 F_{car}

 P_{people}

 $\frac{F_{people}}{F_{car}} = \frac{F_{car}}{F_{car}}$

Elephant or Stilettos You have to have your foot stood on by either A) your average elephant (5, 443kg) or B) your average person (80kg) wearing stilettos. Which would you choose?

A human foot can with stand 3 - 4atm of pressure. Calculate to find out if your foot would survive your choice.

If you switched your choice would your foot fair any better/worse?

Elephant: since an elephant's foot is bigger than yours the force is applied over the area of your foot. $A_{foot} \approx 150 cm^2$

$$P \qquad \qquad = \frac{F\perp}{A} \tag{29}$$

$$P \qquad = \frac{m_{elephant}g}{A_{foot}} \tag{30}$$

$$P = \frac{(5,443kg)(9.8\frac{m}{s^2})}{0.015m^2} \tag{31}$$

$$P = 3,556,093Pa = 35atm$$
(32)

So, your foot would be crushed!

Stiletto: a stiletto is about $1cm^2$ so that is the area the force is applied over.

$$P = \frac{F\perp}{A} \tag{33}$$

$$P = \frac{m_{persong}}{A_s tiletto} \tag{34}$$

$$P = \frac{(80kg)(9.8\frac{m^2}{s^2})}{\pi(0.001m)^2}$$
(35)

$$P = 7,250,000,000Pa = 71,552atm$$
(36)

So, your foot would be crushed A LOT!