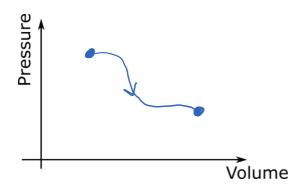

Thermodynamics Foundation Stage (PC.2.L2)

Lecture 2 PV Diagrams, Processes

Textbook Chapters (* Calculus version)

- BoxSand :: KC videos (Processes and PV-Diagrams)
- Knight (College Physics : A strategic approach 3rd) :: 12.3
- $\circ~$ *Knight (Physics for Scientists and Engineers 4th) :: 18.7 ; 19.2
- $\circ~$ Giancoli (Physics Principles with Applications 7th) :: 15-2


Warm up

PC.2.L2-1:

Description: Sketch any process that starts at one equilibrium state and ends at another.

Learning Objectives: [?] - Can you identify the objectives from the previous lecture, and this lecture, that this question is relevant to?

Problem Statement: On the PV diagram below, sketch any process that takes an ideal gas from one equilibrium state to a new equilibrium state. Basically, how are equilibrium states represented on a PV diagram and how are processes represented?

Selected Learning Objectives

1. Coming soon to a lecture template near you.

Key Terms

- Thermodynamic process
- Isochoric process
- Isothermal process
- Adiabatic process
- Isobaric process

Key Equations

Key Concepts

• Coming soon to a lecture template near you.

Questions

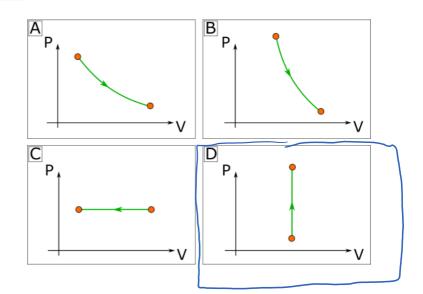
Act I: Isochoric

PC.2.L2-2:

Description: Identify which PV diagram represents an isochoric process. (2 minutes + 2 minutes)

Learning Objectives: [1, 12, 13]

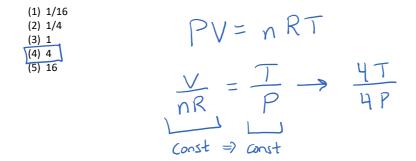
Problem Statement: Consider the 4 PV diagrams below.


(a) Which diagram shows an isochoric process?

150 - Const

choric - Volume

(b) What are the other diagrams called?


A - isothernal B - adiabatic C - isobaric

PC.2.L2-3:

Description: Proportional reasoning with ideal gas law. (3 minutes)

Problem Statement: Consider one mole of an ideal monatomic gas that undergoes an isochoric process from one equilibrium state to another. If the pressure is increased by a factor of 4, by what factor does the temperature change by?

PC.2.L2-4:

Description: Determine signs of first law quantities. (5 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following are the correct signs for an isochoric increase in temperature?

```
(1) \Delta E^{TH}(+), W(+), Q(+)

(2) \Delta E^{TH}(+), W(0), Q(+)

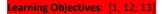
(3) \Delta E^{TH}(+), W(0), Q(-)

(4) \Delta E^{TH}(-), W(-), Q(-)

(5) \Delta E^{TH}(-), W(0), Q(-)

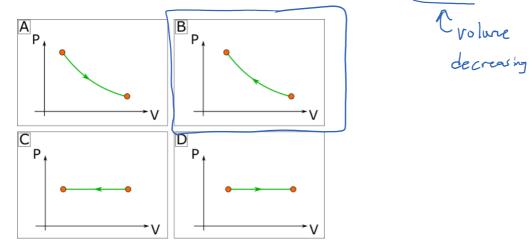
(6) \Delta E^{TH}(-), W(0), Q(-)
```

b) increase INT > DEH >0


c)
$$\Delta E_{th} = W + Q$$

 $\Rightarrow if \Delta E_{th} > 0, Q > 0$

Process	ΔΕ ^{τΗ}	w	Q
Isochoric increase in temp	+	0	+
Isochoric decrease in temp	-	Ō	-
Isothermal expansion			
Isothermal compression			
Adiabatic expansion			
Adiabatic compression			
Isobaric expansion			
Isobaric compression			


Act II: Isothermal

PC.2.L2-5:

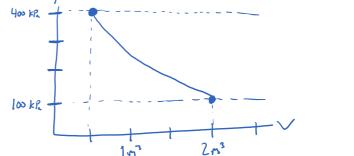
Description: Identify which diagram represents an isothermal process. (2 minutes)

Problem Statement: Which of the following P-V diagrams represents an isothermal compression?

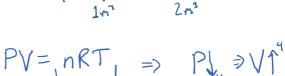
PC.2.L2-6:

Description: Proportional reasoning with ideal gas law. (2 minutes + 4 minutes)

Learning Objectives: [1, 12, 13]


Problem Statement: Consider one mole of an ideal monatomic gas that undergoes an isothermal process from one equilibrium state to another.

at 0.5 m³, what is the final volume?


(a) How is the pressure related to the volume?

- (1) Linear
- (2) Quadratic
- 3) Inversely
- (4) Inverse squared
- (5) No relation

$$P = (const) \frac{1}{V}$$

(b) The pressure starts at 400 kPa and goes to 100 kPa. If the volume started

$$V_f = 2m^3$$

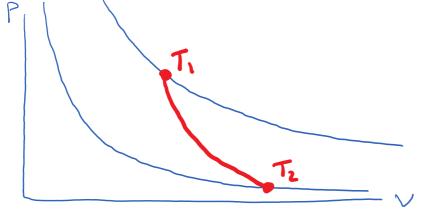
PC.2.L2-7:

Description: Determine signs of first law quantities. (5 minutes)

Problem Statement: Which of the following are the correct signs for an isothermal compression?

Process	ΔΕ ^{τΗ}	w	Q
Isochoric increase in temp	+	\bigcirc	+
Isochoric decrease in temp	5	Õ	-
Isothermal expansion	0		+
Isothermal compression	0	+	-
Adiabatic expansion			
Adiabatic compression			
Isobaric expansion			
Isobaric compression			

Act III: Adiabatic


PC.2.L2-8:

Description: Identify which statements best represents an adiabatic curve on PV diagram (3 minutes)

Learning Objectives: [1, 12, 13]

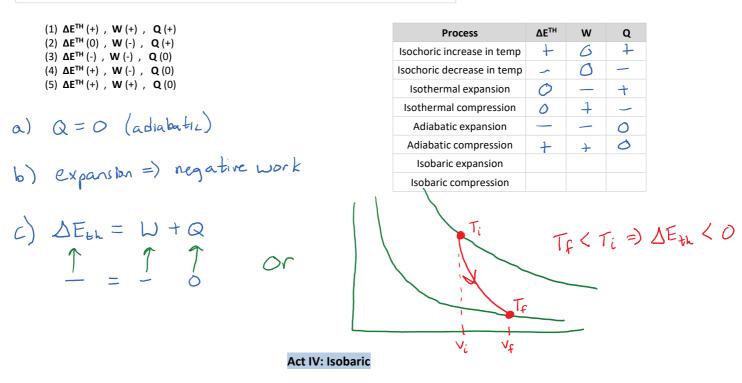
Problem Statement: Which student do you agree with the most?

- (1) I think adiabatic PV lines are curvy and less steep than isotherms.
- (2) Jagree that they are curvy, but they are more steep than isotherms, right?
- (3) Nah, you're both wrong, they are straight lines with a slope that depends on whether the gas is expanding or contracting.

Description: Identify proportionality for adiabatic process. (3 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following statements could be true for monatomic ideal gases that go through an adiabatic process?

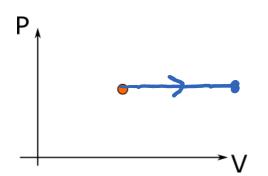


PC.2.L2-10:

Description: Determine signs of first law quantities. (5 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following are the correct signs for an adiabatic expansion?

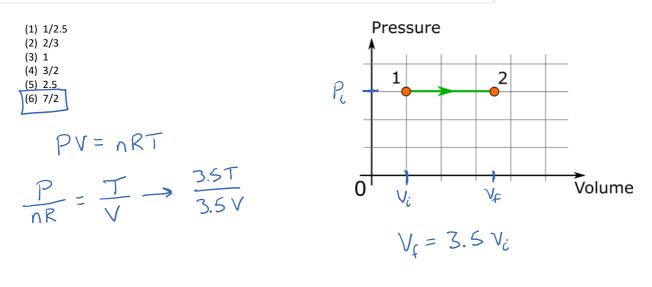


PC.2.L2-11:

Description: Sketch an isobaric process. (2 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Use the provided PV diagram and initial equilibrium state to sketch an isobaric expansion.



PC.2.L2-12:

Description: Proportional reasoning with ideal gas law. (4 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Below shows an isobaric process. By what factor does the temperature change by?

PC.2.L2-13:

Description: Determine signs of first law quantities. (5 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following are the correct signs for an isobaric expansion?

(1) ΔETH (+) , W (+) , Q (+) (2) ΔETH (-) , W (-) , Q (+) (3) ΔE^{TH} (-) , W (-) , Q (-) (4) ΔE^{TH} (+) , W (-) , Q (+) (5) ΔETH (-) W (+) , Q (-) P TF T; Tr>Ti

Process	ΔΕ ^{τη}	W	Q
Isochoric increase in temp	+	0	+
Isochoric decrease in temp	_	0	-
Isothermal expansion	0	_	+
Isothermal compression	0	+	
Adiabatic expansion		_	0
Adiabatic compression	+	+	0
Isobaric expansion	Ŧ		+ +
Isobaric compression	-	+	

a) expansion => negative Work b) picture => Tf > Tz => DEn >0

Act III: Other processes

PC.2.L2-14:

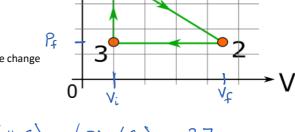
Description: Identify the process type. Proportional reasoning with ideal gas law. (2 minutes + 4 minutes + 2 minutes + 1 minute)

Learning Objectives: [1, 12, 13]

Problem Statement: Consider the PV diagram shown below with 3 processes that form a complete cycle.

(a) What type of process is represented from equilibrium states $1 \rightarrow 2$?

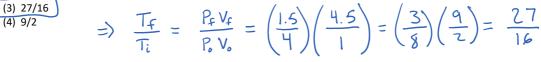
- (1) Isochoric
- (2) Isothermal
- (3) Adiabatic
- (4) Isobaric

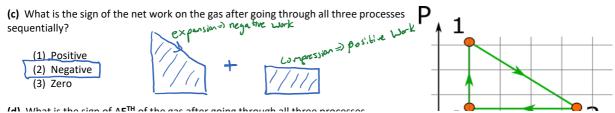

(1) 3/8 (2) 9/5

(4) 9/2

(5) None of the above

(b) Considering the stage from $1 \rightarrow 2$, by what factor does the temperature change by?

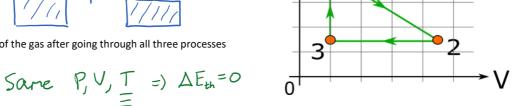

PV=nRT



Ρ

P:

1



Thermodynamics Page 8

(1) Positive (2) Negative (3) Zero

(d) What is the sign of ΔE^{TH} of the gas after going through all three processes sequentially?

PC.2.L2-15:

Description: Determine which processes has a larger value of heat flowing into system. (2 minutes + 2 minutes + 3 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Consider the two different processes shown on the PV diagram below.

- (a) How does the change in temperature compare between process A and process B? Ρ А (1) $\Delta T_A > \Delta T_B$ (2) $\Delta T_A < \Delta T_B$ (3) $\Delta T_A = \Delta T_B$ (b) Which process does more work on the environment? В (1) A (2) **B** s v V (3) A and B do equal work on the environment.
- (c) Which processes has a larger value of heat?

1. Coming soon.

Hints

PC.2.L2-1: No hints.

PC.2.L2-2: No hints.

PC.2.L2-3: No hints.

PC.2.L2-4: No hints.

- PC.2.L2-5: No hints.
- PC.2.L2-6: No hints.
- PC.2.L2-7: No hints.
- PC.2.L2-8: No hints.
- PC.2.L2-9: No hints.
- PC.2.L2-10: No hints.
- PC.2.L2-11: No hints.
- PC.2.L2-12: No hints.
- PC.2.L2-13: No hints.
- PC.2.L2-14: No hints.