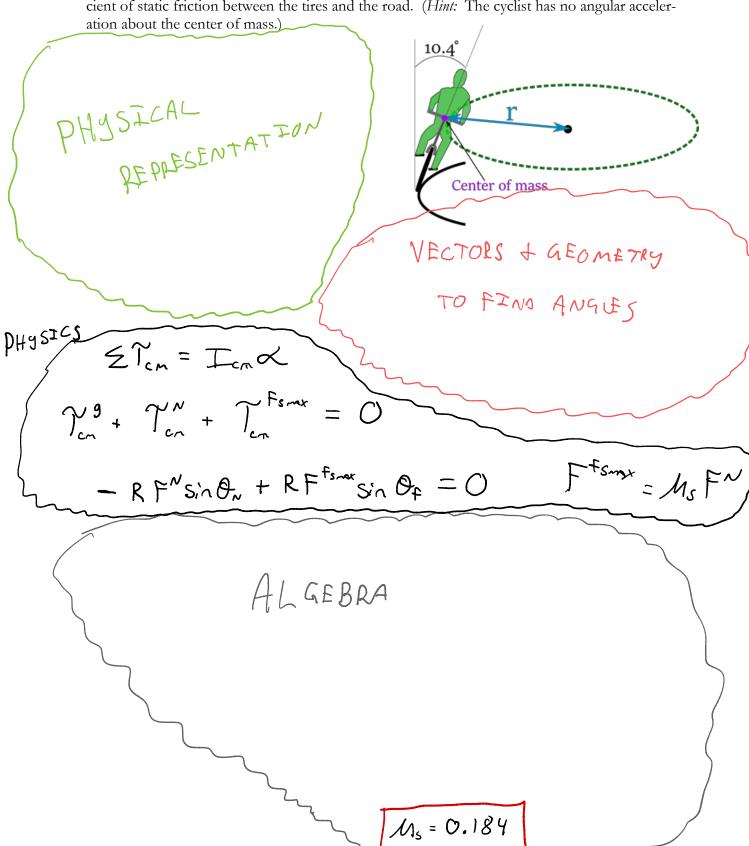
Name:	ID:

Physics 202 Quizbit 1


Week 3 Winter 2023

Collaboration is not allowed. Allowed on your desk are: three 8.5 x 11 inch doubled sided sheets of notes that are bound together, non-communicating graphing scientific calculator, a page of scratch paper, writing utensils, and the exam. You will have 25 minutes to complete this exam.

For questions 1 through 2 **fill in the square** next to all correct answers. A given problem may have more than one correct answer. Each correctly bubbled answer will receive two points. There are 3 correct answers in this section and only the first 3 filled in answers will be graded. There is no partial credit.

- 1. A dumbbell-shaped object is composed of two equal masses, \mathbf{m} , connected by a rod of negligible mass and length \mathbf{r} . If \mathbf{I}_1 is the moment of inertia of this object with respect to an axis passing through the center of the rod and perpendicular to it and \mathbf{I}_2 is the moment of inertia with respect to an axis parallel to the first axis but passing through one of the masses, it follows that:
 - \mathbf{F} \square (a) $\mathbf{I}_1 = \mathbf{I}_2$
 - **ゅ** □ (b) $I_1 > I_2$
- 2. A disk is spinning with an angular velocity ω and an angular acceleration α . For which of the following cases would the disk rotation be slowing down?
 - \triangleright \square (a) α is negative, ω can be positive or negative
 - $\mathbf{F} \square (b) \alpha$ is positive, ω can be positive or negative
 - $F \square (c) \omega$ is negative, α can be positive or negative
 - $\mathbf{F} \Box (\mathbf{d}) \mathbf{\omega}$ is positive, $\mathbf{\alpha}$ can be positive or negative
 - $\mathbf{F} \square$ (e) $\boldsymbol{\alpha}$ is negative, $\boldsymbol{\omega}$ is negative
 - τ (f) α is negative, ω is positive
 - $T \parallel (g) \alpha$ is positive, ω is negative
 - $F \square (h) \alpha$ is positive, ω is positive

3. (4 points) The circle near the south-west corner of OSU-Cascades Campus has a radius of about 25.0 meters. Suppose a cyclist is traveling around the circle at the maximum speed possible and is leaning at a constant 10.4 degrees relative to the vertical as shown in the image below. Use a torque analysis, with a reference axis at the center of mass, to determine the coefficient of static friction between the tires and the road. (*Hint:* The cyclist has no angular acceleration about the center of mass.)

