Thursday, March 29, 2018 8:34 PM

Thermodynamics Foundation Stage (PC.2.L2)

Lecture 2 PV Diagrams, Processes

Textbook Chapters (* Calculus version)

- BoxSand :: KC videos (<u>Processes and PV-Diagrams</u>)
- Knight (College Physics : A strategic approach 3rd) :: 12.3
- *Knight (Physics for Scientists and Engineers 4th) :: 18.7 ; 19.2
- **Giancoli** (Physics Principles with Applications 7th) :: 15-2

Warm up

PC.2.L2-1:

Description: Sketch any process that starts at one equilibrium state and ends at another.

Learning Objectives: [?] - Can you identify the objectives from the previous lecture, and this lecture, that this question is relevant to?

Problem Statement: On the PV diagram below, sketch any process that takes an ideal gas from one equilibrium state to a new equilibrium state. Basically, how are equilibrium states represented on a PV diagram and how are processes represented?

Selected Learning Objectives

1. Coming soon to a lecture template near you.

Key Terms

- Thermodynamic process
- Isochoric process
- Isothermal process
- Adiabatic process
- Isobaric process

Key Equations

Key Concepts

• Coming soon to a lecture template near you.

Questions

Act I: Isochoric

PC.2.L2-2:

Description: Identify which PV diagram represents an isochoric process. (2 minutes + 2 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Consider the 4 PV diagrams below.

(a) Which diagram shows an isochoric process?

(b) What are the other diagrams called?

PC.2.L2-3:

Description: Proportional reasoning with ideal gas law. (3 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Consider one mole of an ideal monatomic gas that undergoes an isochoric process from one equilibrium state to another. If the pressure is increased by a factor of 4, by what factor does the temperature change by?

PC.2.L2-4:

Description: Determine signs of first law quantities. (5 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following are the correct signs for an isochoric increase in temperature?

(1) ΔETH (+) , W (+) , Q (+)

Process ΔETH W

Q

(2)	$\Delta E^{TH}(+)$, W (0) , Q (+)
(3)	ΔE TH (+) , W (0) , Q (-)
(4)	ΔΕ TH (-) , W (-) , Q (-)
(5)	ΔE^{TH} (-) , W (0) , Q (-)

	 	~
Isochoric increase in temp		
Isochoric decrease in temp		
Isothermal expansion		
Isothermal compression		
Adiabatic expansion		
Adiabatic compression		
Isobaric expansion		
Isobaric compression		

Act II: Isothermal

PC.2.L2-5:

Description: Identify which diagram represents an isothermal process. (2 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following P-V diagrams represents an isothermal compression?

PC.2.L2-6:

Description: Proportional reasoning with ideal gas law. (2 minutes + 4 minutes)

Problem Statement: Consider one mole of an ideal monatomic gas that undergoes an isothermal process from one equilibrium state to another.

(a) How is the pressure related to the volume?

(b) The pressure starts at 400 kPa and goes to 100 kPa. If the volume started at 0.5 m^3 , what is the final volume?

- (1) Linear
- (2) Quadratic
- (3) Inversely
- (4) Inverse squared
- (5) No relation

PC.2.L2-7:

Description: Determine signs of first law quantities. (5 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following are the correct signs for an isothermal compression?

(1)	ΔΕ ^{τΗ}	(+)	,	W(+),	Q (+)
(2)	ΔΕ ^{τΗ}	(+)	,	W (-),	Q (-)
(3)	ΔΕ ^{τη}	(0)	,	W(+),	Q (-)
(4)	ΔΕ ^{τη}	(0)	,	W(+),	Q (+)
(5)	ΔΕ ^{τη}	(0)	,	W (-),	Q (+)

Process	ΔΕ ^{τΗ}	W	Q
Isochoric increase in temp			
Isochoric decrease in temp			
Isothermal expansion			
Isothermal compression			
Adiabatic expansion			
Adiabatic compression			
Isobaric expansion			
Isobaric compression			

Act III: Adiabatic

PC.2.L2-8:

Description: Identify which statements best represents an adiabatic curve on PV diagram (3 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which student do you agree with the most?

- (1) I think adiabatic PV lines are curvy and less steep than isotherms.
- (2) I agree that they are curvy, but they are more steep than isotherms, right?
- (3) Nah, you're both wrong, they are straight lines with a slope that depends on whether the gas is expanding or contracting.

PC.2.L2-9:

Description: Identify proportionality for adiabatic process. (3 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following statements could be true for monatomic ideal gases that go through an adiabatic process?

- (1) Pressure is proportional to 1/V
- (2) Pressure is proportional to $1/V^{0.5}$
- (3) Pressure is proportional to $1/V^{1.5}$
- (4) 42

Description: Determine signs of first law quantities. (5 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Which of the following are the correct signs for an adiabatic expansion?

Process	ΔΕ ^{τΗ}	W	Q
Isochoric increase in temp			
Isochoric decrease in temp			
Isothermal expansion			
Isothermal compression			
Adiabatic expansion			
Adiabatic compression			
Isobaric expansion			
Isobaric compression			

Act IV: Isobaric

PC.2.L2-11:

Description: Sketch an isobaric process. (2 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Use the provided PV diagram and initial equilibrium state to sketch an isobaric expansion.

PC.2.L2-12:

Description: Proportional reasoning with ideal gas law. (4 minutes)

Learning Objectives: [1, 12, 13]

PC.2.L2-13:

Description: Determine signs of first law quantities. (5 minutes)

Problem Statement: Which of the following are the correct signs for an isobaric expansion?

Process	ΔΕ ^{τη}	W	Q
Isochoric increase in temp			
Isochoric decrease in temp			
Isothermal expansion			
Isothermal compression			
Adiabatic expansion			
Adiabatic compression			
Isobaric expansion			
Isobaric compression			

Act III: Other processes

PC.2.L2-14:

Description: Identify the process type. Proportional reasoning with ideal gas law. (2 minutes + 4 minutes + 2 minutes + 1 minute)

Learning Objectives: [1, 12, 13]

Problem Statement: Consider the PV diagram shown below with 3 processes that form a complete cycle.

(a) What type of process is represented from equilibrium states $1 \rightarrow 2$?

- (1) Isochoric
- (2) Isothermal
- (3) Adiabatic
- (4) Isobaric
- (5) None of the above

(b) Considering the stage from 1 \rightarrow 2, by what factor does the temperature change by?

(1) 3/8
 (2) 9/5
 (3) 27/16
 (4) 9/2

(c) What is the sign of the net work on the gas after going through all three processes sequentially?

- (1) Positive
- (2) Negative
- (3) Zero

(d) What is the sign of ΔE^{TH} of the gas after going through all three processes sequentially?

- (1) Positive
- (2) Negative
- (3) Zero

PC.2.L2-15:

Description: Determine which processes has a larger value of heat flowing into system. (2 minutes + 2 minutes + 3 minutes)

Learning Objectives: [1, 12, 13]

Problem Statement: Consider the two different processes shown on the PV diagram below.

(a) How does the change in temperature compare between process A and process B?

- (1) $\Delta T_A > \Delta T_B$
- (2) $\Delta \mathbf{T}_{\mathsf{A}} < \Delta \mathbf{T}_{\mathsf{B}}$
- (3) $\Delta T_A = \Delta T_B$

(b) Which process does more work on the environment?

- (1) **A**
- (2) B
- (3) A and B do equal work on the environment.

(c) Which processes has a larger value of heat?

(1) $Q_A > Q_B$ (2) $Q_A < Q_B$ (3) $Q_A = Q_B$

Conceptual questions for discussion

1. Coming soon.

Hints

PC.2.L2-1: No hints.
PC.2.L2-2: No hints.
PC.2.L2-3: No hints.
PC.2.L2-4: No hints.
PC.2.L2-5: No hints.
PC.2.L2-6: No hints.

PC.2.L2-7: No hints.

PC.2.L2-8: No hints.

PC.2.L2-9: No hints.

PC.2.L2-10: No hints.

PC.2.L2-11: No hints.

PC.2.L2-12: No hints.

PC.2.L2-13: No hints.

PC.2.L2-14: No hints.