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1.4: DIMENSIONAL ANALYSIS
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General Physics at OpenStax CNX

SKILLS TO DEVELOP

Find the dimensions of a mathematical expression involving physical quantities.
Determine whether an equation involving physical quantities is dimensionally consistent.

The dimension of any physical quantity expresses its dependence on the base quantities as a product of symbols (or powers of
symbols) representing the base quantities. Table  lists the base quantities and the symbols used for their dimension. For example,
a measurement of length is said to have dimension L or L , a measurement of mass has dimension M or M , and a measurement of
time has dimension T or T . Like units, dimensions obey the rules of algebra. Thus, area is the product of two lengths and so has
dimension L , or length squared. Similarly, volume is the product of three lengths and has dimension L , or length cubed. Speed has
dimension length over time, L/T or LT . Volumetric mass density has dimension M/L  or ML , or mass over length cubed. In general,
the dimension of any physical quantity can be written as

for some powers a, b, c, d, e, f, and g. We can write the dimensions of a length in this form with a = 1 and the remaining six powers all
set equal to zero:

Any quantity with a dimension that can be written so that all seven powers are zero (that is, its dimension is ) is
called dimensionless (or sometimes “of dimension 1,” because anything raised to the zero power is one). Physicists often call
dimensionless quantities pure numbers.

Table : Base Quantities and Their Dimensions

Base Quantity Symbol for Dimension

Length L

Mass M

Time T

Current I

Thermodynamic Temperature

Amount of Substance N

Luminous Intensity J

Physicists often use square brackets around the symbol for a physical quantity to represent the dimensions of that quantity. For
example, if r is the radius of a cylinder and h is its height, then we write [r] = L and [h] = L to indicate the dimensions of the radius and
height are both those of length, or L. Similarly, if we use the symbol A for the surface area of a cylinder and V for its volume, then [A]
= L  and [V] = L . If we use the symbol m for the mass of the cylinder and  for the density of the material from which the cylinder is
made, then [m] = M and [ ] = ML .

The importance of the concept of dimension arises from the fact that any mathematical equation relating physical quantities must be
dimensionally consistent, which means the equation must obey the following rules:

Every term in an expression must have the same dimensions; it does not make sense to add or subtract quantities of differing
dimension (think of the old saying: “You can’t add apples and oranges”). In particular, the expressions on each side of the equality
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in an equation must have the same dimensions.
The arguments of any of the standard mathematical functions such as trigonometric functions (such as sine and cosine), logarithms,
or exponential functions that appear in the equation must be dimensionless. These functions require pure numbers as inputs and
give pure numbers as outputs.

If either of these rules is violated, an equation is not dimensionally consistent and cannot possibly be a correct statement of physical
law. This simple fact can be used to check for typos or algebra mistakes, to help remember the various laws of physics, and even to
suggest the form that new laws of physics might take. This last use of dimensions is beyond the scope of this text, but is something you
will undoubtedly learn later in your academic career.

EXAMPLE : USING DIMENSIONS TO REMEMBER AN EQUATION

Suppose we need the formula for the area of a circle for some computation. Like many people who learned geometry too long ago
to recall with any certainty, two expressions may pop into our mind when we think of circles:  and . One expression is the
circumference of a circle of radius r and the other is its area. But which is which?

Strategy

One natural strategy is to look it up, but this could take time to find information from a reputable source. Besides, even if we think
the source is reputable, we shouldn’t trust everything we read. It is nice to have a way to double-check just by thinking about it.
Also, we might be in a situation in which we cannot look things up (such as during a test). Thus, the strategy is to find the
dimensions of both expressions by making use of the fact that dimensions follow the rules of algebra. If either expression does not
have the same dimensions as area, then it cannot possibly be the correct equation for the area of a circle.

Solution

We know the dimension of area is L . Now, the dimension of the expression  is

since the constant  is a pure number and the radius r is a length. Therefore,  has the dimension of area. Similarly, the
dimension of the expression  is

since the constants 2 and  are both dimensionless and the radius r is a length. We see that  has the dimension of length, which
means it cannot possibly be an area.

We rule out  because it is not dimensionally consistent with being an area. We see that  is dimensionally consistent with
being an area, so if we have to choose between these two expressions,  is the one to choose.

Significance

This may seem like kind of a silly example, but the ideas are very general. As long as we know the dimensions of the individual
physical quantities that appear in an equation, we can check to see whether the equation is dimensionally consistent. On the other
hand, knowing that true equations are dimensionally consistent, we can match expressions from our imperfect memories to the
quantities for which they might be expressions. Doing this will not help us remember dimensionless factors that appear in the
equations (for example, if you had accidentally conflated the two expressions from the example into , then dimensional
analysis is no help), but it does help us remember the correct basic form of equations.

EXERCISE 

Suppose we want the formula for the volume of a sphere. The two expressions commonly mentioned in elementary discussions of
spheres are  and . One is the volume of a sphere of radius r and the other is its surface area. Which one is the volume?

Answer:
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EXAMPLE : CHECKING EQUATIONS FOR DIMENSIONAL CONSISTENCY

Consider the physical quantities s, v, a, and t with dimensions [s] = L, [v] = LT , [a] = LT , and [t] = T. Determine whether each
of the following equations is dimensionally consistent:

a. s = vt + 0.5at ;
b. s = vt  + 0.5at; and

c. v = sin ( ).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same dimensions as the
other terms in that equation and that the arguments of any standard mathematical functions are dimensionless.

Solution

a. There are no trigonometric, logarithmic, or exponential functions to worry about in this equation, so we need only look at the
dimensions of each term appearing in the equation. There are three terms, one in the left expression and two in the expression
on the right, so we look at each in turn:

b. Again, there are no trigonometric, exponential, or logarithmic functions, so we only need to look at the dimensions of each of
the three terms appearing in the equation:

None of the three terms has the same dimension as any other, so this is about as far from being dimensionally consistent as you
can get. The technical term for an equation like this is nonsense.

c. This equation has a trigonometric function in it, so first we should check that the argument of the sine function is
dimensionless:

The argument is dimensionless. So far, so good. Now we need to check the dimensions of each of the two terms (that is, the left
expression and the right expression) in the equation:

The two terms have different dimensions—meaning, the equation is not dimensionally consistent. This equation is another
example of “nonsense.”

Significance

If we are trusting people, these types of dimensional checks might seem unnecessary. But, rest assured, any textbook on a
quantitative subject such as physics (including this one) almost certainly contains some equations with typos. Checking equations
routinely by dimensional analysis save us the embarrassment of using an incorrect equation. Also, checking the dimensions of an
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equation we obtain through algebraic manipulation is a great way to make sure we did not make a mistake (or to spot a mistake, if
we made one).

EXERCISE 

Is the equation v = at dimensionally consistent?

Answer:

One further point that needs to be mentioned is the effect of the operations of calculus on dimensions. We have seen that dimensions
obey the rules of algebra, just like units, but what happens when we take the derivative of one physical quantity with respect to another
or integrate a physical quantity over another? The derivative of a function is just the slope of the line tangent to its graph and slopes are
ratios, so for physical quantities v and t, we have that the dimension of the derivative of v with respect to t is just the ratio of the
dimension of v over that of t:

Similarly, since integrals are just sums of products, the dimension of the integral of v with respect to t is simply the dimension of v
times the dimension of t:

By the same reasoning, analogous rules hold for the units of physical quantities derived from other quantities by integration or
differentiation.
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[∫ vdt] = [v]⋅ [t]. (1.4.15)
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