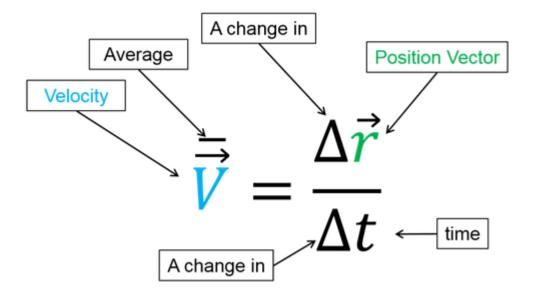
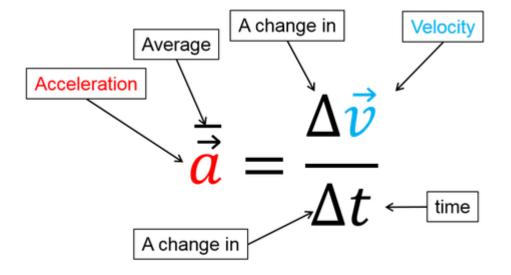
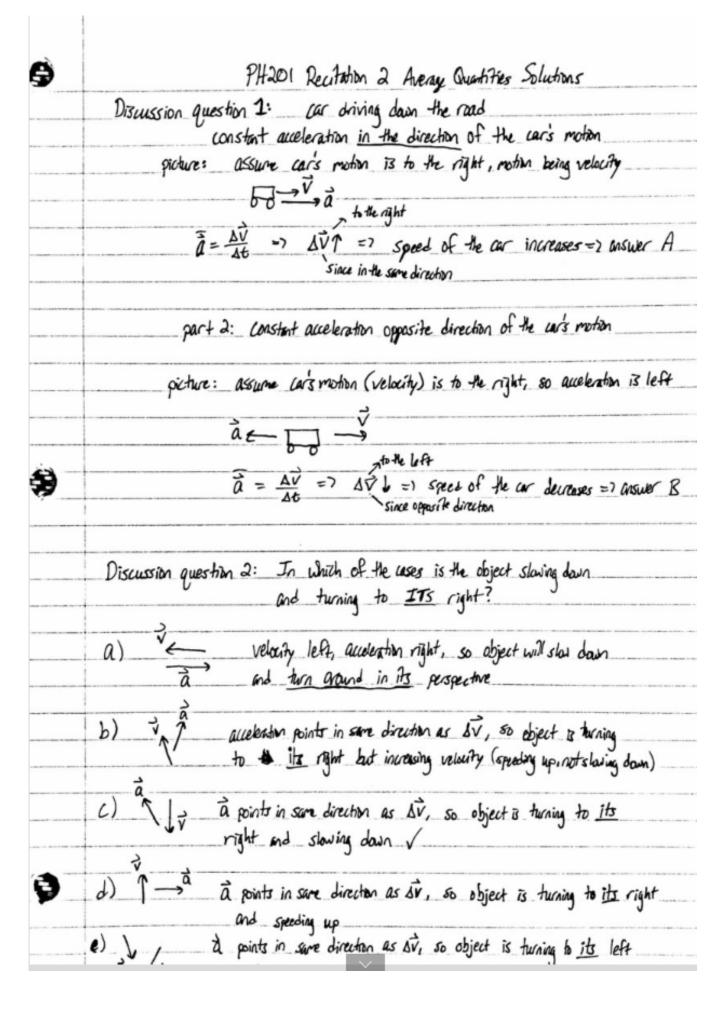

Position

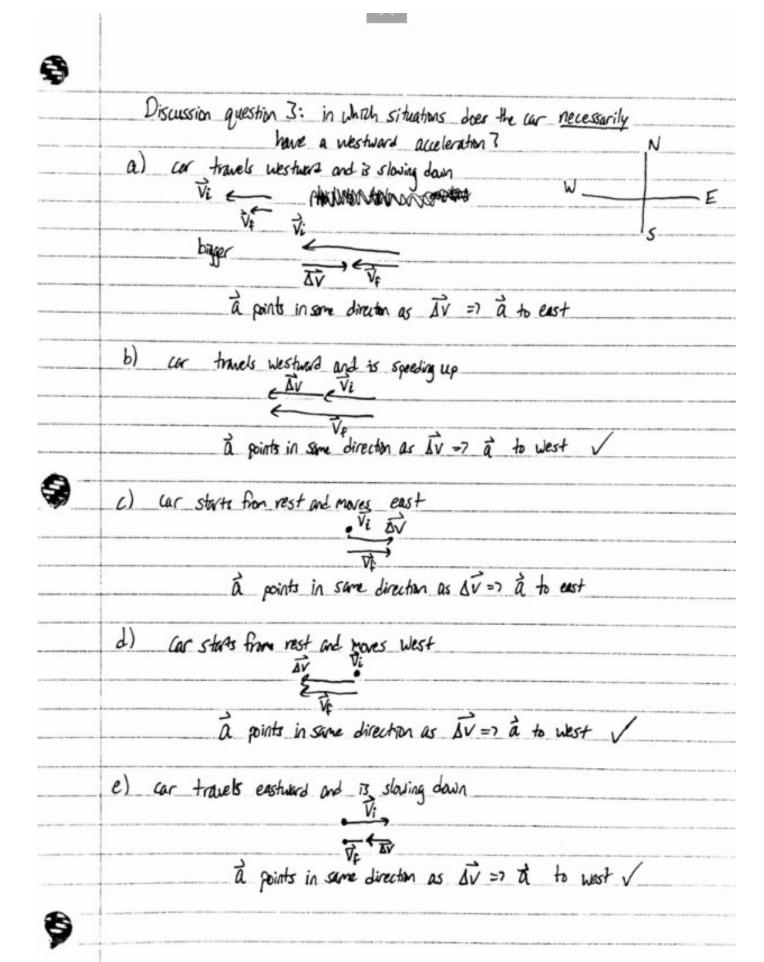

In words: A position vector is defined by its x and y components.

Displacement


In words: The **change in position** (or displacement) is equal to the **final position** minus the **initial position**.

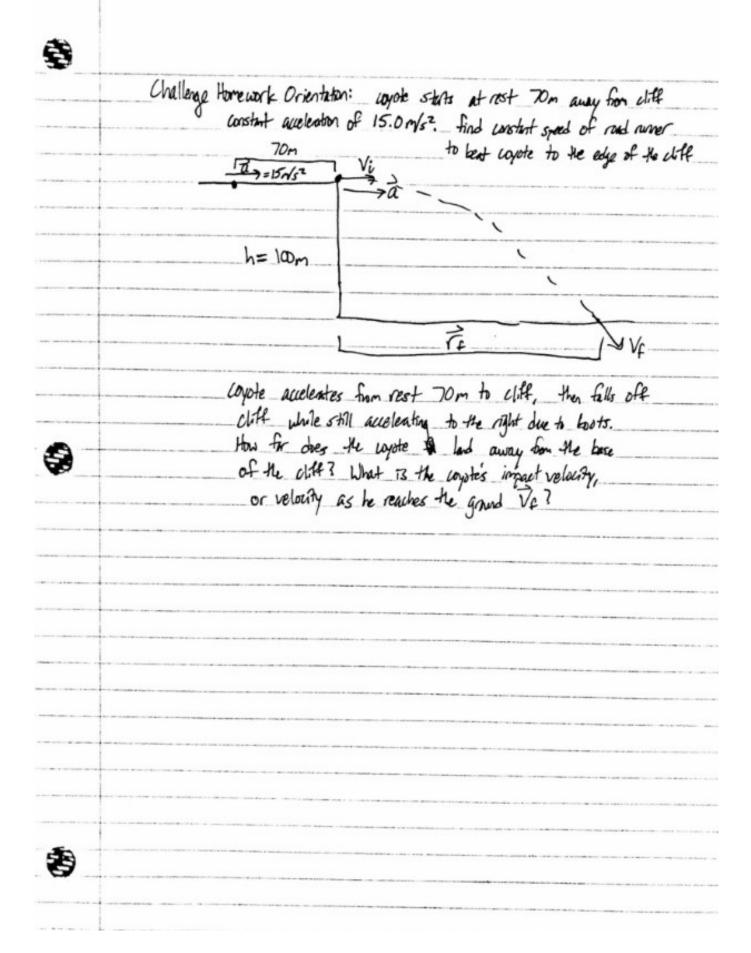
Average Velocity




In words: The **average velocity** is equal to the **change** in **position** divided by the **change** in **time**.

Average Acceleration

In words: The average acceleration is equal to the change in velocity divided by the change in time.


9 Problem of the Day: Gos tells you you're moving 25.0 mph in a direction of 66° N of E at a location 1.33 miles West of the police station. 5 minutes later you are now 2.1 miles north of the police station and are moving east at a speed of 5mph problem orientation: descriptive regressor tation: we are in a location directly west of the origin travelling at a velocity. 5 minutes later we are directly north of the origin traveling with a new velocity. trying to solve for average velocity, average acceleration, and distance / direction you are away from original reading you took = displacement from initial position physical representation: choose police station as origin since we know the 2 locations about that point vector ops for \$\frac{1}{a}/\delta\vec{v}\$ tail to tail \$\vec{v}_i\$ and \$\vec{v}_f\$ 3 Vf = 5mph Vi= 25mb lets convert these quantities into SI units: 1 = 5 mi 1609 m | 1hr = 1000 m 2.23 m | Vg | Vi = 25mi | 1609m | 1hr = 11.17 = | Vc | |r|= 2.|mi 1609m 3378.9 m 121 8 2139,97m 121 It = 5min | 60s 300s Itl

9			
	knavns	wknows	
	Ž.	<i>\$</i>	
	76	₹	
	7.	ΔŸ	
	VF	<u>Δν</u> α	
	t		
	equations: $\vec{\Delta r} = \vec{r_k} - \vec{r_k}$ $\vec{\nabla} = \vec{\Delta r}$		
		solve part a) average velocity To To To	
	Solve part a) average velocity Well we know that $\vec{v} = \frac{\vec{r_t} - \vec{r_c}}{\delta t}$		
	Weilwe	86 30 30 30 30	
	-	7 = (0, 3378.9)m- (-2139.97, 07m	
		3005	
		= < 2139.97, 3379.97M = < 7.13, 11.267 m	
	3005		
	sense making: dimensionality: 's expected since we want velocity / Sign/direction: \$\overline{\tau}\$ points in direction of \$\overline{\tau}\$ and we know \$\overline{\tau}\$ points in \$<+,+7\$ direction \$\overline{\tau}\$		
	Sin / direction: \$ mints in direction of \$5		
		and selver Ar courts in 4+,+7 direction	
		DIE HEN DI PORT	
	b) are	trige acceleration If we know that $\vec{a} = \frac{\vec{\Delta V}}{\Delta t} = \frac{\vec{V_f} - \vec{V_i}}{\Delta t}$	
	VE	If we know that $\vec{a} = \frac{\Delta V}{\Delta t} = \frac{V_f - V_f}{\Delta t}$	
		$= 7 \overline{a} = \langle 2.23, 07 \frac{m}{s} - \langle 11.17 \cos 66, 11.17 \sin 66 \rangle \frac{m}{s}$	
		$\vec{a} = \frac{2.23,07}{3} = \frac{2.23}{3}$	
		203	
	= <2.23 - 4.54, 0-10.27 = <0077,0347 52		
		300 s	
3	Sug man:	sign/direction: a points in direction of SV which has	
. •	Serve Tury	sign/direction: a points in direction of SV which has the same direction as answer / SV points in <-,-7 direction	
		order of regnitude: acceleration is very small whole should make suse as DV is small and took 5 minutes to do so	
		sense as DV is small and took 5 minutes to do so	

	Solve port () distince and direction needed to return to initial reading				
	which is really displacement, but opposite direction of displacement				
	So we went $-\Delta \vec{r}$. Well, $\Delta \vec{r} = \vec{r}_f - \vec{r}_c$:				
					ad -Br = -ra - ra = ra -ra
	= L-2139.97, D7m - CO, 3378, 97m				
	= <-2139.97, -3378.97 m distance and direction format wanted, not vector form				
				600 day -2139.97m	
	-3378/4 /-07				
	The state of the s				
	$dstance = hypotenuse = \sqrt{(338A)^2 + (2139.97)^2} = 4000 \text{ m or } 4km$ $direction = 0 \qquad tan(0) = \frac{3378.9}{2139.97}$ $=) \qquad 0 = tan^{-1} \left(\frac{3378.9}{2139.97}\right) = 57.65 \text{ deg}$ $so need to true! 4000m at 57.65 \text{ degrees } 50f E$				
					Sense making: sign/direction: to get back to original position we need to
					head in opposite direction of Dr which is <+,+7 so we rect to go <-,-? which we are
	order of regarded: since we have a right triangle we know				
	that of 7 rial of which it is V				

